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AAbstrbstractact.. The development of full-field measurement techniques paved the way for the design of new

mechanical tests. However, because these mechanical tests provide heterogeneous strain fields, no closed-

form solution exists between the measured deformation fields and the constitutive parameters. Therefore,

inverse identification techniques should be used to calibrate constitutive models, such as the widely

known finite element model updating (FEMU) and the virtual fields method (VFM). Although these inverse

identification techniques follow distinct approaches to explore full-field measurements, they all require using

an optimisation technique to find the optimum set of material parameters. Nonetheless, the choice of a suitable

optimisation technique lacks attention and proper research. Most studies tend to use a least-squares gradient-

based optimisation technique, such as the Levenberg-Marquardt algorithm. This work analyses optimisation

algorithms, gradient-based and -free algorithms, for the inverse identification of constitutive model parameters.

To avoid needless implementation and take advantage of highly developed programming languages, the

optimisation algorithms available in optimisation libraries are used. A FEMU based approach is considered

in the calibration of a thermoelastoviscoplastic model. The material parameters governing strain hardening,

temperature and strain rate are identified. Results are discussed in terms of efficiency and the robustness of

the optimisation processes.

KKeeywyworordsds. Optimisation Algorithms, Finite Element Model Updating, Heterogeneous Thermomechanical

Tests, Thermoelastoviscoplasticity

1 Intr1 Introductionoduction

The mechanical behaviour of sheet metals is usually sensitive to strain, strain rate and temperature. Recently, due to

the growth of heat-assisted manufacturing processes [1], strain rate and temperature effects have gained more impact.

Hence, accurately predicting sheet metals’ mechanical behaviour, under a wide range of strain rates and temperatures,

is increasingly relevant to advance manufacturing processes. To predict such behaviour, thermoelastoviscoplastic

constitutive models, characterised by their nonlinearity and a large number of material parameters, can be applied.

However, the traditional calibration of such models requires an extensive database with tests performed at a broad

range of strain rates and temperatures [2].
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The use of full-field measurement techniques, heterogeneous mechanical tests, and inverse methods has reduced the

required experimental tests [3]. Applying full-field measurements techniques, such as digital image correlation (DIC),

the entire displacement fields at the specimen’s surface can be recorded and directly used to calibrate a constitutive

model. The information obtained from these tests can be further enriched using temperature measurements. The

constitutive model material parameters can be identified using inverse methods, such as the finite element model

updating (FEMU) [4].

Solely using full-field measurements with inverse methods does not guarantee that suitable material parameters are

found. An automatic strategy using optimisation algorithms is required to find these material parameters. However,

most studies related to constitutive models’ calibration tend to overlook the importance of optimisation algorithms

by resorting to familiar ones, such as gradient-based least-squares algorithms [5]. These algorithms may perform

well and be suitable for nonlinear least-squares problems, such as the ones formulated using the mentioned inverse

methods but may also present disadvantages. A few studies have explored the use of other optimisation algorithms and

strategies, such as direct-search and stochastic methods [6–8].

This paper aims to implement different optimisation algorithms in the calibration of a thermoelastoviscoplastic

constitutive model. Three heterogeneous thermomechanical tests performed at different average strain rates are used

in this work. The FEMU is used as the inverse method, and three optimisation algorithms are applied in the optimisation

procedure. The results obtained with different optimisations algorithms are compared in terms of efficiency and

robustness.

2 Methodology2 Methodology

2.1 Het2.1 Hetererogeneous thermomechanical togeneous thermomechanical testest

Simulation data from three heterogeneous thermomechanical tests is used as a reference to represent experimental

data [9]. Nonetheless, this reference data is based on tests performed on a Gleeble 3500 thermomechanical simulator,

using a hydraulic servo system able to impose tension or compression forces, as well as a direct resistance heating

system [10]. A uniaxial tension loading is imposed on the specimen, with a heterogeneous temperature field. Finally,

the tests are performed at different average strain rates of 10-2, 10-3, and 10-4 s-1. The temperature field is imposed

through the direct resistance heating system, controlling and maintaining the temperature at the specimen’s centre

during the test. The specimen’s remaining part presents a temperature gradient due to the machine’s grips’ water-

cooling system. The added value of this procedure is the temperature gradient triggering a heterogeneous deformation,

providing information on the material’s mechanical behaviour for different temperatures and strain rates.

The reference data is generated by a finite element model of the tests, whose configuration is presented in Fig. 1. For

simplicity, the finite element model is restricted only to the region of interest (ROI), defined by a width of 28 mm and

length of 60 mm. The finite element model is two-dimensional, assuming a plane stress formulation. Abaqus/Standard

[11] software is used in the finite element analysis, and the four-node bilinear plane stress quadrilateral element CPS4

is used, with a large strain formulation. The finite element mesh is composed of 1680 elements. Displacement-driven

boundary conditions are imposed on the finite element model’s extremities, at −30 and 30 mm of the reference

coordinate 𝑥 (origin at the specimen’s centre).
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Fig. 1. Schematic rFig. 1. Schematic reprepresentation of the specimen used in the hetesentation of the specimen used in the hetererogeneous thermomechanical togeneous thermomechanical tests (dimensions inests (dimensions in

mm). The grips armm). The grips are re reprepresentesented on the eed on the extrxtremities of the specimen and the remities of the specimen and the region of integion of intererest (Rest (ROI) defined fOI) defined for theor the

finitfinite element model [9].e element model [9].

The temperature field acquired with Gleeble equipment usually presents a parabolic shape, symmetrical about the

specimen’s centre. Measurements of three thermocouples placed at −40, 0 and 40 mm of the reference coordinate

𝑥, confirm the approximate symmetrical and parabolic shape of the profile along the specimen’s length. Temperature

variations along the width of the specimen are neglected. Additionally, it was confirmed that the temperature field

remained constant throughout the deformation process [9]. Because of its parabolic shape, each test’s temperature

field can be described by a second-order polynomial, as presented in Fig. 2, between −30 and 30 mm of the reference

coordinate 𝑥. For the three tests, the maximum temperature of approximately 500 ºC is reached at the specimen’s

centre, decreasing to around 360 ºC at −30 and 30 mm of the reference coordinate 𝑥. Therefore, the temperature field

is imposed in the finite element model through the second-order polynomial, and the nodes’ temperatures remain

constant throughout the test.

The Johnson-Cook thermoelastoviscoplastic constitutive model is adopted [11]. The model is characterised by a

multiplicative formulation, decomposing the flow stress evolution in three terms: strain hardening, temperature and

strain rate. It can be written as

where 𝜀̅p is the equivalent plastic strain and 𝜀̅͘p the equivalent plastic strain rate. The first term describes the

strain hardening effect, modelled by the material parameters 𝐴, 𝐵, and 𝑛. The temperature effect is modelled by the

temperature 𝑇, the transition temperature 𝑇tr, governing the threshold of temperature effect, the melting temperature

𝑇m, and the exponent 𝑚. Lastly, the strain rate sensitivity is modelled by the material parameters 𝐶 and 𝜀̇0 , defining the

threshold of strain rate dependence.
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Fig. 2. Longitudinal tFig. 2. Longitudinal temperemperaturature field of hete field of hetererogeneous thermomechanical specimenogeneous thermomechanical specimen’s longitudinal t’s longitudinal temperemperaturature fielde field

described bdescribed by second-ory second-order polder polynomials. Each curvynomials. Each curve is identified fre is identified from the aom the avvererage strage strain rain ratate of each te of each test (in sest (in s-1-1).).

The reference data is created using a set of reference parameters [9], characteristic of a DP980 dual-phase steel (see

Table 1). The material is considered isotropic, and the Hooke’s law is used to describe the elastic behaviour, and the

von Mises yield criterion is adopted. The elastic properties of the material, namely Young’s modulus 𝐸 = 210 GPa and

Poisson’s ratio 𝜈 = 0.30, are known a priori and assumed to be constant in the temperature range of study.

TTable 1. Rable 1. Refefererence set of parence set of parametameters used in the Johnson-Cook thermoelasters used in the Johnson-Cook thermoelastooviscoplastic constitutiviscoplastic constitutivve model te model too

genergeneratate the re the refefererence data used fence data used for calibror calibration [9].ation [9].

Then, the reference data is generated using the temperature field and the reference set of parameters. This reference

data is composed of the displacement field of the ROI (longitudinal and transversal displacements) and the load for

each time instant. The reference load for the tests performed at three different average strain rates is presented in Fig.

3. A different number of time instants composes the tests’ reference data, specifically, 47, 58, and 62, respectively, for

tests with an average strain rate of 10-2, 10-3, and 10-4 s-1. It can be observed that the load is sensitive to the average

strain rate, as an increase leads to higher values of maximum load.
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Fig. 3. Load eFig. 3. Load evvolution throlution througoughout the defhout the deformation prormation process of the hetocess of the hetererogeneous thermomechanical togeneous thermomechanical tests perfests performed atormed at

an aan avvererage strage strain rain ratate of 10e of 10-2-2 (left), 10(left), 10-3-3 (centr(centre), and 10e), and 10-4-4 ss-1-1 (rig(right).ht).

2.2 Finit2.2 Finite Element Model Updatinge Element Model Updating

The finite element model updating (FEMU) is used to calibrate the constitutive model. This method is based on the

simple idea of iteratively adjusting the finite element model’s unknown material parameters to minimise the difference

between experimental and numerical results. The FEMU has been largely adopted in many different applications,

partly because of its ease of implementation and flexibility. The objective function to be minimised can be composed of

different data, such as strain, displacement and load signal. This flexibility has contributed to an increase in the number

of formulations presented in the literature. Recently, the FEMU is mainly being used in combination with full-field

measurements. In that regard, the adopted objective function can be written as

where 𝛘 = (𝐴, 𝐵, 𝑛, 𝑚, 𝐶) is the vector of optimisation variables. The variables 𝑡, 𝑝, and 𝑞 are the number of tests, time

instants, and in-plane measurement points. To distinguish between experimental (reference) and numerical variables,

the superscripts “exp” and “num” are used, respectively. The variable 𝜀max
exp represents the maximum strain value of

all in-plane components and time instants for each test. Analogously, 𝐹max
exp represents the maximum load value of all

time instants for each test. Because the displacement field represents the raw data, the strain field is computed from the

displacement field using a total Lagrangian formulation. The reference strain field is computed before the calibration

procedure, and the updated strain field is computed after every finite element simulation, from the extracted numerical

displacement field.

2.3 Optimisation2.3 Optimisation

The optimisation procedure controls the FEMU method and is performed by different algorithms. The optimisation

procedure is implemented in Python programming language, using the optimisation algorithms from the SciPy library

[13]. This library has several optimisation algorithms (e.g., gradient-based, stochastic), providing the user with easy

implementation in its programs. Three optimisation algorithms of different types were selected for the optimisation

procedure: Levenberg-Marquardt, Nelder-Mead and Differential Evolution algorithms.
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The Levenberg-Marquardt (LM) is a gradient-based algorithm that uses the approximated Hessian and Jacobian

matrices [14]. It used to calibrate constitutive models [15–17] because it is well suited for solving nonlinear least-

squares problems. The LM algorithm requires the user to select an initial solution, and if not well chosen, it can lead

to convergence difficulties or to finding local minima, instead of the global minimum. Nonetheless, if the problem is

well-conditioned and a suitable initial solution is selected, the algorithm can rapidly converge.

The Nelder-Mead (NM) algorithm is one of the best known and simpler direct-search algorithms used in unconstrained

optimisation [18]. The NM algorithm uses a simplex that begins with a set of points for every optimisation variable

plus one, considered its vertices. Based on a series of transformations of the simplex, the algorithm iteratively reduces

the simplex size. The algorithm is known to achieve satisfactory results in few iterations but may also present

convergence problems. Comparatively to gradient-based algorithms, this algorithm stands out for not requiring the use

of derivatives.

The Differential Evolution (DE) is a population-based stochastic algorithm that generates new solutions from other

solutions [19]. The DE algorithm can be characterised by its ease of implementation, robustness, and finding the global

minimum of a problem in most attempts. However, a significant drawback of DE is its high computational cost and low

convergence rate compared to other optimisation algorithms. On the other hand, when compared to other population-

based stochastic algorithms, DE tends to overperform them. As it is common in population-based algorithms, the

number of solutions used as the population can significantly impact the convergence and success of the optimisation

procedure [20]. Moreover, the DE algorithm requires the definition of variables bounds to generate the initial set of

solutions, either manually, randomly or distributed over the search space.

Contrary to the DE, the LM and NM algorithms are suitable for unconstrained problems. However, to limit the three

algorithms’ search space, lower and upper bounds are defined for the variables (see Table 2). The defined bounds are

based on the order of magnitude of each variable, and special attention was taken not to restrict the search space

overly. On the DE algorithm, the bounds are directly imposed, while for LM and NM algorithms, a transformation of

the variables is used. For all the algorithms, the optimisation variables are normalised by its bounds. Considering 𝑥̂i

= 𝑥i.⁄𝑥0) the variable 𝑥i normalised relative to its initial value 𝑥0, the lower and upper bounds, 𝑥i
min and 𝑥i

max, are

normalised as

where 𝑥̂i
min and 𝑥̂i

max are the normalised bounds. Then, the transformed variable 𝑋̂i for 𝑥̂i ≥ 1 corresponds to

and for 𝑥̂i < 1 corresponds to
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Using these transformations guarantees that the algorithms achieve feasible solutions, i.e., solutions lying inside the

search space.

3 R3 Resultsesults

The material parameters 𝐴, 𝐵, 𝑛, 𝑚, and 𝐶 are defined as the optimisation variables to identify. The melting temperature

𝑇m, the transition temperature 𝑇tr, and the parameter 𝜀̇0 are considered known a priori and kept fixed throughout the

optimisation procedure. These parameters are kept fixed because the first two have specific physical meaning, and the

third may increase the problem of non-uniqueness of the solution [21].

To mimic image noise from actual full-field measurements, random noise from a normal Gaussian distribution is added

to the reference data’s displacement field, while the load signals are kept noiseless. To evaluate the robustness of the

methodology and performance of algorithms, three data sets are used as reference data for the calibration: (i) without

noise; (ii) with noise of amplitude 10-5 mm; and (iii) with noise of amplitude 10-3 mm. The objective function values

using the variables reference set are 0.0, 3.130 × 10-9, and 3.017 × 10-5, respectively, for each data set.

Because the LM and NM algorithms are sensitive to the initial solution, five different initial sets are generated using

the Latin hyperspace sampling method, generating solutions evenly distributed over the search space (see Table 2).

The number of initial sets was arbitrarily selected as equal to the number of optimisation variables. This sampling

method does not consider the reference set, avoiding an initial bias towards the global minimum. The distribution of

the variables of each generated initial set over the search space is shown in Fig 4. These five initial sets are used for the

LM and NM algorithms, while for the DE algorithm, a population of 50 solutions is generated using the same sampling

method. This population size was chosen as ten times the number of optimisation variables.

TTable 2. Rable 2. Refefererence set and upper and loence set and upper and lowwer bound of optimisation ver bound of optimisation variables. The sets of optimisation variables. The sets of optimisation variablesariables

rreprepresent the initial sets used fesent the initial sets used for the Leor the Levvenberenberg-Marg-Marquarquardt (LM) and Nelder-Mead (NM) algorithms.dt (LM) and Nelder-Mead (NM) algorithms.
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The three algorithms are, in general, used with the default settings defined in the SciPy library. The exception is the step

size for the finite difference approximation of the Jacobian in the LM algorithm, set equal to 10-3. The adaptive setting

in the NM algorithm is also set, enabling the algorithm to adapt its parameters to the problem’s dimensionality.

The final solutions and objective function values obtained in the optimisation procedures are summarised in Table 3,

for the three algorithms. Additionally, in Fig. 5, the objective function’s evolution throughout the function evaluations is

represented for the three algorithms.

Considering that for final solutions within 0.1% of error from the reference solution, the algorithms achieve the global

minimum, it is observed that the LM algorithm presents the worst performance of the three algorithms. Overall, the

LM achieves the global minimum only twice, whereas the NM algorithm achieves the global minimum six times, and

the DE algorithm can find the global minimum in two out of three attempts. The fact that LM cannot achieve the global

minimum more often can be related to the step size for the finite difference approximation of the Jacobian, which is

probably not small enough. The algorithm could benefit from starting a new optimisation procedure, using the obtained

solution as the optimisation’s initial solution, and reducing the step size.

LM and NM algorithms’ results confirm their sensitivity to the initial set, with results varying depending on the initial

set. This is particularly evident when the variable 𝐴 of the initial set is close to its upper bound, as it is the case of set

2. In this situation, the solution stagnates very early, either in the upper and lower bound of variable 𝐴. Based on these

results, it can be said that avoiding initial solutions close to the variables’ bounds can potentially decrease the chance of

the algorithm converging there. In general, variables 𝑛, 𝑚, and 𝐶 present higher success rates in achieving the reference

solution. However, set 5 with the LM algorithm shows local minima, which are very susceptible to this algorithm.

The effect of noise in the results is quite interesting, as it is observed that noise can benefit the algorithm. In the case

of the LM and NM algorithms, the final solutions achieved are, in general, very similar between the data sets without

noise and with noise of amplitude 10-5 mm. However, in the LM with initial set 3, it is observed that the presence of

noise benefits the algorithm in achieving a better solution than without noise. When the level of noise is increased to

an amplitude of 10-3 mm, both the LM and NM algorithms are not as efficient in achieving the reference solution, but

the NM algorithm appears to be less negatively affected by the presence of additional noise. The DE algorithm appears

to be less affected by noise regarding the final solution, as each variable solution of the data set with noise of amplitude

10-3 mm is within 0.1% of error from the reference solution. However, the final solution for the data set with noise of
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amplitude 10-5 mm is not close to the reference one, but it can be related to a local minimum. To further investigate the

effect of noise in the DE algorithm, more attempts should be performed, as the DE algorithm is not deterministic, and a

component of randomness always exists. The objective function convergence is also affected by the presence of noise.

For example, for the LM algorithm with the initial set 1, where the final solutions are relatively similar, the algorithm

converges around 1000, 600, and 50 function evaluations, respectively, for data sets without noise, with noise of

amplitude 10-5 and 10-3 mm.

In summary, the differences between the LM and NM algorithms are more evident in terms of convergence rate, where

the first tends to converge rapidly, whereas the former typically requires a higher number of function evaluations. A

single attempt was performed for the DE algorithm with each data set, and it appears to be more robust than the

other two algorithms. Nonetheless, it generally requires a high number of function evaluations to converge to the

global optimum. Considering the use of multiple initial sets for the LM and NM algorithms, it can be considered a good

substitute to the DE algorithm.

Fig. 4. Distribution in the searFig. 4. Distribution in the search space of the optimisation vch space of the optimisation variables, normalised bariables, normalised by its bounds, in each initial set fy its bounds, in each initial set foror

the Lethe Levvenberenberg-Marg-Marquarquardt (LM) and Nelder-Mead (NM) algorithms. The rdt (LM) and Nelder-Mead (NM) algorithms. The refefererence set is also rence set is also reprepresentesented.ed.
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Fig. 5. EFig. 5. Evvolution of objectiolution of objectivve function thre function througoughout function ehout function evvaluations using the Lealuations using the Levvenberenberg-Marg-Marquarquardt (LM), Nelder-dt (LM), Nelder-

Mead (NM), and DiffMead (NM), and Differerential Eential Evvolution (DE) algorithms, rolution (DE) algorithms, reprepresentesented fred from left tom left to rigo rightht. R. Results corresults correspond tespond to data setso data sets

without noise, with noise of amplitudes 10without noise, with noise of amplitudes 10-5-5, and 10, and 10--33, fr, from tom top top to botto bottom.om.

4 Conclusion4 Conclusion

A methodology to calibrate thermoelastoviscoplastic constitutive models based on full-field measurements and the

FEMU is considered to reduce the number of thermomechanical tests involved. Three heterogeneous thermomechanical

tests performed at different average strain rates are used as reference data required by the calibration procedure. By

taking advantage of a modern programming language library, three optimisation algorithms are easily implemented

in the calibration process, namely the Levenberg-Marquardt (LM), Nelder-Mead (NM), and Differential Evolution (DE)

algorithms. The algorithm’s results are compared for three data sets, involving different noise levels introduced in the

reference data’s displacement field. The DE algorithm demonstrates the most robust algorithm by reaching or being

very close to the global minimum in two out of the three data sets. However, it is also susceptible to local minima even

though less than the LM and NM algorithms. Moreover, the number of function evaluations required for convergence

by the DE algorithm is higher than the others. A strategy using multiple initial sets could be used to circumvent

the sensitivity of LM and NM algorithms to initial sets. Additionally, it would be interesting to explore the use of

the DE algorithm early on to reduce the search space, and then use LM or NM algorithms to fine-tune the solution.

Nonetheless, this approach could be susceptible to local minima in the vicinities of the global optimum. In the scope

of the present work, a calibration software was developed in Python programming language, which will allow the easy

implementation and combination of optimisation algorithms.

TTable 3. Final solutions and objectiable 3. Final solutions and objectivve function ve function values obtained in the optimisation pralues obtained in the optimisation procedurocedure using the Lee using the Levvenberenberg-g-
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MarMarquarquardt (LM), Nelder-Mead (NM) and Diffdt (LM), Nelder-Mead (NM) and Differerential Eential Evvolution (DE) algorithms. Rolution (DE) algorithms. Results corresults correspond tespond to data setso data sets

without noise, with noise of amplitude 10without noise, with noise of amplitude 10-5-5, and 10, and 10-3-3 mm. The smaller fmm. The smaller font size vont size values ralues reprepresent the resent the relatielativve erre erroror

(%) of each v(%) of each variable’s final variable’s final value talue to the ro the refefererence one. The vence one. The values in bold indicatalues in bold indicate that the erre that the error tor to is smaller thano is smaller than

0.1%.0.1%.
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