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AAbstrbstractact.. Finite element modeling (FEM) has recently become the most attractive computational tool to predict

and optimize many industrial problems. However, the FEM becomes ineffective as far as complex multi-physics

parameterized problems, such as induction heating process, are concerned because of high computational

cost. This work aims at studying the possibility of applying a new approach based on the reduced order

modeling (ROM) to obtain approximate solutions of a parametric problem. Basically, the effect of induction

heating process parameters on some physical quantities of interest (QoI) will be analyzed under the real-time

constraint. To achieve this dimensionality reduction, a set of precomputed solutions is first collected, at some

sparse points in the space domain and for a properly selected process parameters, by solving the full-order

models implemented in the commercial finite element software FORGE®. A Proper Orthogonal Decomposition

(POD) based reducedorder model is then applied to the collected data to find a low dimensional space onto

which the solution manifold could be projected and an approximated solution for new process parameters

could be efficiently computed in real time. Besides, the POD is applied to build a reduced basis and to compute

their corresponding modal coefficients. It is then followed by artificial intelligence techniques for regression

purpose, such as sparse Proper Generalized Decomposition, to fit the low dimensional POD modal coefficients.

Hence, the problem can be solved with a much lower dimension compared to the initial one. It was shown that

a good approximation of the QoI was provided, in low-data limit, using a single POD modal coefficient as a

response for the regression methods. However, the obtained approximation accuracy needs to be enhanced.

KKeeywyworordsds. Induction heating, Proper Orthogonal Decomposition Based Reduced-order Model, Artificial

Intelligence, Sparse Proper Generalized Decomposition, FEM

1 Intr1 Introductionoduction

Induction hardening is one of the most surface heat treatment processes widely employed in aerospace and automotive

industries [1,2] to improve material performance by changing mechanical properties of the critical zones [3]. The

process consists of two steps; an electrically conducting component is first heated by electromagnetic induction to

a temperature within or above the transformation range and then cooled by an immediate quenching. This process

has the advantage of providing a very short surface heat-up times, a precise control of the treated zone, a good

fatigue performance, and a good reproducibility [4]. However, the control of mechanical parts quality goes through

the prediction and the optimization of the induction hardening process. The main difficulty behind this optimization

is the multi-physics property of induction hardening (electromagnetism, thermal, metallurgical, and mechanical field)

in addition to the large number of process parameters; thanks to advanced numerical simulation tools, modelling

and solving physical problems is possible by using some conventional discretization methods such as finite element,

finite volume, etc. Nevertheless, passing through those methods to optimize multi-physics parametrized problems is

often regarded as a key issue. In fact, when the number of parameters increases, the multi-query simulation approach

becomes inefficient and makes optimization procedure very time consuming and computationally expensive. In order
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to alleviate such issues, reduced order modeling (ROM) techniques constitute an appealing alternative to standard

discretization techniques given the interesting compromise in terms of computational cost, speed of execution, and

results accuracy. Among these ROM techniques, which require in most cases the knowledge of equations describing

the physics, Proper Orthogonal Decomposition (POD) [5], reduced basis methods [6], and Proper Generalized

Decomposition (PGD) [7] have been widely used. However, some new strategies were developed to compute the

parametric-based solution from sampled data, collected from experimental measurements or from finite element

simulations, such as Sparse Subspace Learning (SSL) [8] and sparse Proper Generalized Decomposition (sPGD) [9].

The aim of this work is to investigate the possibility of applying a new approach based on the ROM to compute

the temperature evolution in a gear under the effect of induction heating process parameters in almost real-time.

To achieve this goal, the POD based reduced-order model was used and then followed by artificial intelligence (AI)

techniques for regression purpose. It is worth pointing out that the proposed approach relies only on data and doesn’t

require any knowledge of the full-order formulation or modification of the numerical finite element (FE) codes, hence

the approximated parametric solution is constructed by using a datadriven non-intrusive ROM approach.

Based on a set of precomputed solutions of the full-order FE models (called snapshots), collected at some sparse

points in the space domain and for different values of input parameters, the POD enables to build a reduced basis onto

which the initial FE solution could be projected. The reduced state vector of the snapshots data, so-called POD modal

coefficients, were then considered and multiple regression methods were used to fit the low dimensional POD modal

coefficients. In other words, the POD modal coefficients represent the approximated solution of the ROM.

The rest of the paper is organized as follows: Section 2 defines the methodology and the numerical technologies with

more details. Section 3 defines the process and the data generation. The results are then presented in Section 4 and

Section 5 concludes this work.

2 Dimensionality r2 Dimensionality reduction beduction by POD and ry POD and regregression methodsession methods

Consider a set of P snapshots Ti = T(t, μμi)i=1,…,P ∈ ℝN, computed by solving the full-order FE model at each time step

and for different values of input parameters μμi, where t, μμ = (μ1,…,μS), and N are the time, the set of S parameters, and

the dimension of the FE solution, respectively. The snapshot matrix M ∈ ℝNxP is defined such that M = [T1 T2 Tp] and

each column contains a snapshot. To find the reduced basis, the singular value decomposition (SVD) is applied to M

as follows:

where U ∈ ℝNxN and V ∈ ℝPxP are orthogonal matrices containing the left and right singular vectors of M, respectively.

Σ ∈ ℝNxP is a rectangular diagonal matrix containing the singular values σk of M sorted in a decreasing order. The

reduced POD basis, B = [ϕ1, ϕ2, …, ϕR], is defined as the first R left singular vectors of M (i.e. first R columns of U)

corresponding to the R largest POD singular values. Thus, singular values provide a quantitative guidance for choosing

the size of the POD basis. In practice, POD provides an efficient representation of the snapshot data in low-dimensional

subspace of dimension R, much lower than N, such that
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where ϕj and αji are called POD modes and POD modal coefficients, respectively. In matrix form, B ∈ ℝNxR and ai =

BT.Ti where ai ∈ ℝR .

Now, instead of using P snapshots Ti, i=1,…,P of dimension N to fit the model to the data, the low-dimensional

representation of the initial snapshots ai, i=1,…,P will be considered. Then, the return back to the original space could

be achieved using Equation (2). The literature review illustrates that many regression techniques can be used to

approximate the POD model coefficients for any choice of parameters included in the vector μ,μ, such as sPGD which is

based on the separated representation approach and enables quite rich approximations for high dimensional problems

in a low-data limits [10], multiple linear regression [11], support vector regression SVR [12], random forests [13], and

gradient boosting [14]. These techniques will be applied in the current work.

Let now consider a database, composed by P combinations of input parameters μμi and their corresponding response

ai. The response matrix is written as A=[u1, …, uR] where each row of A contains a vector ai. Regression techniques

consist in defining, in different ways, the approximated function fk as follows:

where εk is the residual term. The origin of regression error may depend on physical issues or the choice of

hyperparameters associated to each method.

3 Pr3 Problem statoblem statement and data generement and data generationation

Induction heating (IH) is becoming one of the preferred heating technologies in many industrial applications [15] due

to its advantages regarding fast heating, efficiency, accurate control, and cleanness compared to other classical heating

techniques. Basically, it consists in applying an alternating current (AC) to a copper coil surrounding a conducting

workpiece, a magnetic field generated by the AC induces an eddy current and consequently a heating by Joule effect

of the workpiece (see Fig.1). In addition, IH combines multiple physics and it can be modeled by several FE codes,

in which partial differential equations (PDE) describing electromagnetic and thermal problems are solved. Equations

governing the physics at hand are not presented in this paper, more detailed information can be found in [16]. In order

to optimize and improve IH performances applied to a spur gear of 22 teeth (studied workpiece shown in Fig. 2),

multiple parameters can be taken into consideration such as process, material, and geometrical parameters. However,

as a first step of this study, three important parameters were considered while the other ones were kept constant. The

selected parameters and their lower and upper limits are shown in Tables 1.
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Fig. 1. Principle of induction heating [17]Fig. 1. Principle of induction heating [17]
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Fig. 2. Experimental set-up of the induction heating.Fig. 2. Experimental set-up of the induction heating.

TTable 1. Input parable 1. Input parametameters and their loers and their lowwer and upper limits.er and upper limits.

As mentioned before, dimensionality reduction requires a set of precomputed high-fidelity solutions, collected by

solving the original full-order model for different values of input parameters. For this reason, the commercial finite

element software FORGE® was used. It is worth mentioning that the model has two symmetry planes and hence

only half-tooth of gear is modeled for enhancing the computational efficiency. Besides, several FE simulations were

conducted using Latin Hypercube Sampling (LHS) of experiments [18]. Particularly, it guarantees a good coverage

of each parameter space. According to the LHS, a total of 15 simulations have been generated. as shown in Fig. 3.

Therefore, it is worth seeing how well the regression methods perform with small amount of data.
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Fig. 3. Latin HyperFig. 3. Latin Hypercube Samplingcube Sampling

The post-processing of the temperature evolution was done at 14 specific points representing the main heat-affected

zones as shown in Fig. 4.
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Fig. 4. MeasurFig. 4. Measurement points.ement points.

4 R4 Results and discussionesults and discussion

It is worth pointing out that the above-mentioned simulations result in different process times and consequently

different dimensions. To alleviate such issue, a normalization of the discrete times was done for each simulation as

follows:
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Fig. 5. TFig. 5. Temperemperaturature ee evvolution at point #1 based on (a) the rolution at point #1 based on (a) the reel time, (b) the normalized time.eel time, (b) the normalized time.

A snapshot matrix was defined for each measurement point, then the POD modes and their corresponding modal

coefficients are computed as explained in Section 2. The left singular vectors of the snapshot matrices were truncated

to the first singular vector which correspond to the POD mode. This choice is made in accordance with the fact that,

with the first singular value, more than 90% of the variance is retained as shown in Fig. 6. It is worth pointing out that

only results for points (#1, #5, #9, and #2.3) were shown in this section for the sake of clarity.
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Fig. 6. Normalized singular vFig. 6. Normalized singular values of the thermal field falues of the thermal field for 4 snapshot matrices.or 4 snapshot matrices.

After computing the modal coefficients, a surrogate model for each one of them and for each measurement point was

constructed. Before that, the standardization of the input parameters was applied to avoid problems related to units

and different scaled features, then the dataset was divided into training and testing subsets (80% of data is used to

build the models and 20% to evaluate their accuracy).

Fig. 7. shows the scaled real versus the scaled predicted values of modal coefficients for points (#1, #5, #9, and #2.3)

using different regression methods implemented in python packages except the sPGD. The red points correspond to the

data used to build the regression model and the blue ones correspond to the testing data used to evaluate its accuracy.

When points are too close to the black line, the surrogate model provides a good fit to data. Indeed, the dispersion of

these points with respect to the black line gives a visual indicator of error. Additionally, the score associated to each

regression model for the red and blue points was also presented in Fig.7. It is clear that the results are slightly different

from one measurement point to another and the SVR regression model provides the best fit followed by the sPGD, then

the other techniques.
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Fig. 7. Scaled prFig. 7. Scaled predictedicted ved versus scaled rersus scaled real real response fesponse for 4 measuror 4 measurement points.ement points.

Fig. 8. shows the temporal evolution of the temperature obtained by the full model, the POD-based reduced model (i.e.

Using equation (2) with real values of modal coefficients), and the SVR regression model (i.e. using equation (2) with
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the predicted values of model coefficients) which provides comparatively the best fit.

It is worth mentioning that the curves of the SVR regression model (red curves) should overlap the dashed black

curves which is almost perfectly done for both the training (left data) and testing data (right data) and for the four

measurement points as well. For point #2.3, a slight difference between the red and black dashed curves of the test

data was obtained. However, this error is still acceptable, and the predicted and the real curves show the same trend.

Nevertheless, since one POD mode and consequently one model coefficient as a response for the regression was

considered, it seems that it is not sufficient to describe in a proper way the real temporal evolution of temperature.

To improve the approximation accuracy, two modes and modal coefficients were considered instead of one, but the

obtained results of regression were not good enough and leading to a problem of overfitting, despite the optimization

of the hyperparameters associated to regression techniques. This part constitutes a work in progress.
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Fig. 8. Comparison of the tFig. 8. Comparison of the temporemporal eal evvolution of tolution of temperemperaturature betwe between the initial full model, the POD-based reen the initial full model, the POD-based reducededuced

model (with the rmodel (with the real veal values of model coefficients), and the Salues of model coefficients), and the SVR rVR regregression model (with the pression model (with the predictedicted ved values of modelalues of model

coefficients) fcoefficients) for 4 measuror 4 measurement points: data used fement points: data used for cror creating the reating the regregression model (left) and data used tession model (left) and data used to eo evvaluataluatee

the rthe regregression model accuression model accuracy (rigacy (right).ht).

5 Conclusion5 Conclusion

In this paper, an approach, based on dimensionality reduction by POD coupled with regression techniques to fit a

model to the POD modal coefficients, was proposed to compute the temperature evolution during the multi-physics

parametric-based induction heating process in low-data limit. The approach was successfully applied for 14 sparse

measurement points in the space domain, in which a basis with a single vector was built and consequently a single POD

modal coefficient was computed and used for creating the surrogate model. A good approximation was provided, and

a quite good performance of some regression techniques was shown as well. A comparative investigation showed that

the SVR regression model gives the best fit to the data.

Nevertheless, regression methods work well with the first POD modal coefficient associated to the first POD mode,

but this latter doesn’t fit perfectly the initial FE solution. Applying regression methods to the second and third modal
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coefficients do not provide good results. Future developments are required in order to improve the accuracy of the

approximated solution. Once a better approximation is obtained, the solution will be extended to address the whole

space domain using interpolation techniques.
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