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AAbstrbstractact.. We have seen in Part I of this paper that model order reduction allows the involvement of physics-

based models in design, as in the past, but now also in online decision-making, without requiring unreasonable

computing resources. On the other hand, machine learning techniques were not ready to cope with the

processing speed and the lack of data. It was therefore necessary to adapt a number of techniques, and to

create others, capable of operating online and even in the presence of a very small amount of data: the so-

called "physics-informed artificial intelligence" techniques. For that purpose, we have adapted and proposed

a number of techniques, which have proven and are proving every day in many industrial applications their

capabilities and performances. Six major uses of AI in engineering concern: (i) visualization of multidimensional

data; (ii) classification and clustering, supervised and unsupervised, where it is assumed that members of the

same cluster have similar behaviors; (iii) model extraction, that is, discovering the quantitative relationship

between inputs (actions) and outputs (reactions) in a consistent manner with respect to the physical laws.

When addressing knowledge extraction, item (iv) above, as well as the need of explaining for certifying, item

(v), advances are much limited and both items need for major progresses, as the one enabling discarding

useless parameters, or discovering latent variables whose consideration becomes compulsory for explaining

experimental findings, or combining parameters that act in a combined manner. Discovering equations is a very

timely topic because it finally enables transforming data into knowledge.

KKeeywyworordsds. Scientific Machine Learning, Physics-informed Neural Networks, Thermodynamics

1 Intr1 Introductionoduction

With the irruption of the so-called fourth paradigm of science, we face a new way of doing research: one in which

experiments, theory, computation and data analysis—through the intensive use of machine learning—are employed

simultaneously [1]. Science has been mainly experimental from its inception, nearly two millennia ago. Several

centuries ago, it became theoretic, and with the help of the mathematical language, humans have been able to express

beautifully the laws of the universe as universal laws. Only some decades ago, science became also computational,

helped by the irruption of personal computers, but also supercomputing facilities. Finally, the last artificial intelligence

summer, only some years ago, has helped scientists to extract knowledge from data. Even some attempts have been

made to create artificial intelligence physicists, see [2,3].

However, machine learning techniques and, particularly artificial intelligence, behave often as a black box: there is

no guarantee of the accuracy of the result and, at the same time, this result lacks most of the times of a suitable

interpretation. In recent times there has been a growing interest in the development of scientific machine learning

techniques able to unveil scientific laws from data. The interest is two-fold. On one hand, the possibility of leveraging

big data to unveil scientific laws from them is interesting by itself. On the other, the first results suggest that the more

data we add to the process, the less data we need [4,5].
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In this work we review of our latest results on the development of self-learning digital and hybrid twins. In the first

part, we review the development of hybrid twins based on machine learning techniques arising from a posteriori

Proper Generalized Decomposition (PGD) techniques. In the second one, we focus on the development of deep learning

techniques that guarantee the fulfillment of the principles of thermodynamics. Finally, we show some implementations

that employ Augmented Reality to seamlessly communicate the results to the user for a fast decision making.

2 Self-learning digital twins2 Self-learning digital twins

In our previous work, see [6,7] we develop a digital twins that is able to correct itself when the data stream do not

provide with results in accordance with the model implemented in it. This is possible by resorting to the concept

of sparse-PGD techniques, that finds a rank-1 tensor approximation to the discrepancy between the model and the

observed results.

The developed twin, see Fig. 1, is able to provide information to the user via Augmented Reality, while locating the

position of the load—and thus providing an explanation to the physics taking place—. If the results provided by the

twin do not fit well with the built-in model, the twin is able to compute rank-1 corrections to the model via sparse-PGD

methods.

Fig. 1. HyFig. 1. Hybrid twin fbrid twin for a for a foam beam subjectoam beam subjected ted to a punctual load. The deo a punctual load. The devveloped seloped syyststem is able tem is able to locato locate the position ofe the position of

the load wthe load while prhile prooviding the user with useful infviding the user with useful information on hidden information on hidden information such as strormation such as stresses or stresses or strains [6]ains [6]

In general, predictions will take the form

where A represents the built-in model, and B the self-learnt corrections. In the example in Fig. 1, the beam is modelled

via a classical, linear Euler-Bernoulli-Navier beam model, which does not represent faithfully the behavior of the beam

Hybrid Twins. Part II. Real-time, data-driven modeling

2050/2

https://popups.uliege.be/esaform21/docannexe/image/2050/img-1.png
https://popups.uliege.be/esaform21/docannexe/image/2050/img-2.png


and presents systematic biases. Once these biases are detected, our technique corrects the model, as explained before,

by adding as many rank-1 corrections as needed and storing them in the B-term of Eq. (1).

Fig. 2. Comparison betwFig. 2. Comparison between eeen experiments (+), theorxperiments (+), theoretical pretical predictions gedictions gaavve be by the Ey the Euler-Bernoulli-Nauler-Bernoulli-Navier model (*)vier model (*)

and the final, corrand the final, correctected pred predictions made bedictions made by the twin afty the twin after the learning prer the learning procedurocedure (o). The legend re (o). The legend reprepresents theesents the

absolutabsolute erre error made in mm. Ror made in mm. Results takesults taken fren from [6]om [6]

3 Thermod3 Thermodynamics-aynamics-awwarare deep learninge deep learning

In the last few years there has been a growing interest in the development of deep learning techniques that could take

into account the accumulated scientific knowledge. This results in techniques that need for less data and whose result

comply by construction with known laws of physics.

Within this rationale, the authors have developed a family of deep neural networks that are able to comply by

construction with the first and second laws of thermodynamics [4,8,9,10].

Assume that the variables governing the behavior of the system at a particular level of description are stored in a vector

Under this prism, machine learning would be equivalent to finding 𝑓 by regression, provided that sufficient data

is available. How this regression is accomplished is of little importance: neural networks or classical (piecewise)

regression are thus equivalent, if both work well.

To guarantee the thermodynamic admissibility of the resulting approximation, we impose Eq. (1) to have a GENERIC

form [4]:

Where 𝑳 represents the classical Poisson matrix of Hamiltonian mechanics (and is, therefore, skew-symmetric) and

𝑴 represents the so-called friction matrix, that must be symmetric, semi-positive definite in order to guarantee
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thermodynamic consistency.

In our previous works, see [2] [3], we perform regression analysis from data so as to unveil the particular form

of the expression for the energy, 𝐸, and entropy, 𝑆, potentials. The resulting formulation guarantees by construction

thermodynamic admissibility and provides excellent results in the data-driven identification of complex behaviors.

The sketch of such a network is depicted in Fig. 3. Essentially, a sparse autoencoder first determines the intrinsic

dimensionality of the data set. Then, for the just determined variables-whose precise physical meaning is very often

not known—a time integrator is learnt that exactly conserves energy and dissipates the right amount of entropy.

As an example, consider a Couette flow of an Oldroyd-B polymer suspension, see Fig. 4, right.

Fig. 3. SkFig. 3. Sketetch of a structurch of a structure-pre-preserving neureserving neural netwal networork. In itk. In it, a sparse aut, a sparse autoencoder first detoencoder first determines the intrinsicermines the intrinsic

dimensionality of data. Then, a time intdimensionality of data. Then, a time integregratator is learnt for is learnt for these vor these variables. Tariables. Takaken fren from [10]om [10]

Fig. 4. CouettFig. 4. Couette floe flow of an Oldrw of an Oldrooyyd-B pold-B polymerymer. Left. Left, finit, finite element discre element discretization of the pretization of the problem. Rigoblem. Rightht, pr, prediction doneediction done

bby the netwy the networork fk for a floor a flow ww whose charhose charactacteristics had not been seen beferistics had not been seen beforore: position, ve: position, velocityelocity, ener, energy and egy and extrxtra-stra-stressess

ttensor at diffensor at differerent positions in the floent positions in the floww. T. Takaken fren from [10]om [10]
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4 Conclusions4 Conclusions

In this paper we review some of the developments made by the authors for the construction of hybrid twins. We

have reviewed first an approach based upon machine learning of rank-1 corrections to the experimental deviations

from established models of the physical asset at hand. In the second part, we have reviewed an approach based on

the employ of deep learning techniques. As a salient feature, the proposed techniques guarantees by constructions the

fulfillment of the first and second principles of thermodynamics.
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