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AAbstrbstractact.. This paper aims to compare different heterogeneous test designs from the perspective of the

confidence interval quantification of inversely identified parameters, where the influence of a DIC optical

system systematic and random error are taken into account. Because the errors in optical measurement can

arise from many reasons and sources, our methodology relies on the system's errors determined from initial

sets of pictures acquired at the load-free state for hundreds of specimens (over 850 tests over the past three

years). In this way, a prior probability distribution of systematic and random error, arisen from the system initial

settings and testing procedures are determined. Further, by conducting an inverse identification procedure of

linear orthotropic elastic material parameters, the influence of the error distributions is studied for different

types of heterogeneous specimens. The presented methodology determines the DIC bias and random error

propagation through the inverse identification procedure to individual parameters. For each specimen design,

confidence intervals of identified material parameters were determined. The results show the appropriateness

of a specimen design for the identification of particular material parameters.

KKeeywyworordsds. Heterogeneous Test, Digital Image Correlation, Full-field Measurements, Confidence Intervals,

Mechanical Testing

1 Intr1 Introductionoduction

Conventionally, in mechanical material characterization, standard tests (e.g. uniaxial tensile, uniaxial compression,

shear, biaxial tests) are employed. The main drawback of those tests is evident when a material model has an increasing

number of parameters, which implies an increased difficulty to measure them in well-suited experiments [1]. An

attractive alternative is available by testing a heterogeneous strain field test, where the surface strains/displacements

are measured with techniques like Digital Image Correlation (DIC). By using this approach, at least in principle, the

determination of parameters from a single test is possible.

In this regard, it is essential to design a heterogeneous strain field specimen in a way to enable reliable parameter

identification. There have been many attempts to design and identify material parameters from a single heterogeneous

test. According to the comprehensive review paper by Pierron and Grédiac [2], these tests can be classified into four

groups based on the progression of sophistication. These are designed by intuition, design by strain state, design by

identification quality, and design by full identification simulation. While the specimen design led by intuition (e.g.

[3–6]) relies mainly on experiences of an originator, a design-by-strain state naturally incorporates the idea of using

strain state as a design variable [7–9]. This concept combines as many as possible different strain states in the specimen

design to improve sensitivity and consequently to improve identification.

However, the diversity of strain state is not the only limiting factor in the specimen design. Souto et al. [10,11], for

example, additionally introduced the span of a particular strain mode as an indicator. It also accounts for plastic strain

distribution, which should be as extensive as possible to achieve the richness of information in the case of elastoplastic

models. While the indicator is a model-independent strain-based measure, it should also somehow account for the
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strain field sensitivity to the model's parameters, especially when performing an inverse identification procedure. To

evaluate the sensitivity, one may calculate the influence of a material's model parameter variation on the resulting

strain field and may assess the information carried by the strain field. But the price to pay is that the approach is

time-consuming due to many calculations of parameters' variations. By using this measure, different heterogeneous

specimen designs can be compared. Lecompte et al. [12,13], for example, compared sensitivities of two different

specimen geometries for identification of elastic orthotropic lamina: a regular cruciform specimen and a cruciform

specimen with a central hole drilled in the middle. The purpose of the latter is to enhance the heterogeneous

deformation field. They found that the regular geometry shows less variance in the identified parameters than results

obtained with the open-hole specimen even though the open-hole shape has higher sensitivity around the hole.

This paper aims to compare different specimen designs from the viewpoint of the whole identification chain, starting

from DIC systems' measurement uncertainties (i.e. bias and random error) quantification to its propagation throughout

the identification chain, resulting in a confidence interval assessment. In our approach, we analyzed and accounted

for real uncertainty data, processed from prior measurements spanning over three years, without any classification

of the experiment types. As the uncertainty quantification accounts for the system's resulting uncertainties, without

examining their origin or characteristics, it does not, however, accounts for the propagation of these uncertainties

during the specimen loading. Furthermore, we used the obtained system’s uncertainties to compare confidence

intervals for parameters of a linear orthotropic elastic material model, when different heterogeneous tests, ranging

from simple uniaxial, open-hole, notched, T-shaped, simple shear, and bending, are used in the identification procedure.

2 Methodology2 Methodology

The purpose of this paper is to assess, how the systems' measurement uncertainties (i.e. the system random error and

bias) affect parameters’ confidence intervals assessment when analysing different heterogeneous specimens. To tackle

this, we employed a methodology in which we (i) assess the optical system’s random error and system bias, (ii) analyse

how the errors propagate throughout the identification chain, resulting in a confidence interval assessment.

2.1 Err2.1 Error assessment of eor assessment of existing measurxisting measurements frements from DIC arom DIC archichivvee

The first step in the confidence interval assessment is an evaluation of the measurement uncertainties associated with

our DIC equipment. To get the most realistic information about measurement uncertainty, we evaluated the system’s

uncertainty from our existing measurements taken in the past three years with no particular interest in the experiment

type. After mounting a heterogeneous specimen with a speckle pattern in the testing machine, we acquire a series of

images with the DIC measurement system. Let us emphasize that in this step, there is no load applied to the specimen.

Therefore, we know that the measured displacements should be zero. When evaluating the images with DIC, we get the

full-field measured displacements in longitudinal (Fig.1a) and in the transverse direction (Fig.1b). As we know that

there should be no displacement, we can treat the measured values as the error of the displacement measurements. To

use this information in further analysis, we assess the probability density distribution of x and y displacements/errors.

We found that we can closely approximate the distribution of measurement error with a normal distribution N(μ, σ)

(c.f. Fig. 1c, Fig. 1d).
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Fig. 1. DIC errFig. 1. DIC error pror processing: a), b) spatial distribution of displacement measurocessing: a), b) spatial distribution of displacement measurement errement error in and diror in and direction, c), d)ection, c), d)

histhistogrograms of the spatial errams of the spatial error distributionor distribution

To assess the error distribution that is more realistic to the measuring system, we reviewed all our existing

measurements. In all cases, measuring results were obtained using the same DANTEC Dynamics Q-400 DIC measuring

system. The system consists of two 2 Mpx digital cameras with 35 mm focal length lenses, a synchronization time box,

and software Istra 4D (DANTEC Dynamics) for image processing. The image speckle pattern consisted of a matt white

background with matt black dots, which were for all specimens prepared by using an airbrush. Each measurement

contained several thousand measuring points. They take into account most of the uncertainty causes, for example,

non-ideal speckle pattern, changes in lighting conditions, some optical distortions, camera noise, camera misalignment,

calibrations conditions of the DIC system, different subset size, and also possible user errors. We processed 850

individual measurements from our private archive, without any classification of experiment type. We took into account

all experimental setups like a standard uniaxial, open hole, notched, three/four-point bending specimen tests, and

others. To include this information in further analyses, we took the displacements from the start of each measurement

and calculated the mean μi and standard deviation σi, separately for x and y displacement fields.

Fig. 2. Assessment of DIC measurFig. 2. Assessment of DIC measurement errement errors based on prior eors based on prior experimentsxperiments

Next, from populations of means μi and standard deviations σi for all measurements, we created two histograms

of probability distributions of both estimators. Because different experimental arrangements were set with different

experimental setups, which include various Fields Of View (FOV), we normalized the calculated mean 〈μi〉=μi/hi and

standard deviation 〈σi〉=σi/hi of each measurement errors with the largest dimension of the FOV hi. As a result,

we get two populations of the normalized means and normalized standard deviations of errors. Their probability

density distributions are shown in histograms in Fig. 2b and Fig. 2c, respectively. Furthermore, the distribution of the

mean errors is symmetrical over the zero value, which confirms that the likelihood of samples not being loaded in

the observed moment is the highest. The final step is to approximate the calculated distributions with a probability

distribution law, so we can use information from the past three years in the Monte Carlo simulations (MCSs) for

generating the measurement errors of synthetic experiments. The approximation of the probability distribution of the
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normalized means of the errors D〈μ〉 is a normal distribution with mean -4x10-7 and standard deviation 178x10-7.

Furthermore, the approximation of the standard deviations of the errors D〈σ〉 is a log-normal distribution with the

mean and standard deviation parameters -12.2 and 0.81, respectively.

2.2 Err2.2 Error pror propagopagation thration througoughout the identification chainhout the identification chain

In this section, we present a methodology that estimates the propagation of the system’s bias and random error

(quantified in the previous section) throughout the identification chain. To achieve this, we first conducted the

calculation of uncertainties of the material parameters by using MCSs, where, in each repetition, new errors εi are

generated based on the distributions from the previous section. For each Monte Carlo iteration i, we randomly sample

the normalized mean 〈μ〉 and standard deviation 〈σ〉 from the approximated probability distributions D〈μ〉 and D〈σ〉.

After scaling those with the height of FOV, we get the mean and standard deviation for the current iteration. Since in our

case, DIC full-field displacement measurements closely follow N(μ, σ), we use the distribution to generate displacement

errors ε of the entire field. In the next step, we investigate, how this randomly generated error ε propagates throughout

the Finite Element Model Updating (FEMU) identification method resulting in the confidence interval assessment. To

exploit the influence of random error and the system's bias ε on the identified parameters θθ̃̃̃,̃ let us investigate, how

small data perturbations affect the model's parameters. With the approach similar to Mathieu et al. [14], we obtain the

following relationship:

where JJ presents parameter sensitivity matrix, obtained from the FEM model. It should be emphasized, that in our

case the sensitivity matrix JJ is obtained numerically, by variation of the parameters θθ̃.̃ In the final step, the equation

is evaluated in the MCSs, from where a population of parameter variations ΔΔθθ is obtained. From this population, a

confidence interval is assessed as the standard deviation of the population.

3 R3 Resultsesults

The presented methodology, which includes MCSs for a determination of confidence intervals of inversely identified

material parameters considering full-field displacement measurements, will be demonstrated on 10 common

specimens from the literature (Fig. 3). They were used to identify parameters for different constitutive models (some

for elasticity models, others for plasticity), but we will take advantage of their geometry and make an investigation of

appropriateness for identification of elastic material properties for orthotropic linear elasticity model. Based on this,

we compare these designs in terms of the uncertainty of each identified parameter.
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Fig. 3. ConsiderFig. 3. Considered specimens: a) standared specimens: a) standard uniaxial td uniaxial tensile tensile test specimen [15], b) open-hole specimen [16], c) notest specimen [15], b) open-hole specimen [16], c) notchedched

specimen [17], d) notspecimen [17], d) notched specimen [18], e) notched specimen [18], e) notched specimen [4], f) S-shaped specimen [3], g) Tched specimen [4], f) S-shaped specimen [3], g) T-shaped specimen-shaped specimen

[19], h) Iosipescu shear specimen [20], i) Iosipescu shear specimen [21], bending t[19], h) Iosipescu shear specimen [20], i) Iosipescu shear specimen [21], bending test specimen [22]est specimen [22]

All specimens are 2.5 mm thick unidirectional Carbon/epoxy composite, reported in Rossi and Pierron [23]. Material

is modelled as an orthotropic linear elastic material, with material parameters being four engineering elastic constants

θθ = {Exx, Eyy, Gxy, υxy}, with optimal values given in [23]. Therefore, we search for the confidence intervals of those

parameters: ΔΔθθ = {ΔExx, ΔEyy, ΔGxy, Δυxy}. Experiments were simulated by Finite Element Method (FEM) using

ABAQUS/Standard. Approximately 26 000 2D continuum plane stress linear elements CPS8 were used to simulate the

specimen deformation under plane stress condition. The boundary conditions and loads are illustrated in Fig. 3 in red.

The load is in all experiments a vertical force, applied either through a kinematic coupling to the respected boundary

surface or on a rigid tool. For the MCSs, we need the sensitivity matrix JJ, which contains derivatives of displacements

with respect to material parameters. They are calculated by a forward finite difference method using Python scripts

and ABAQUS. The values of derivatives are calculated in the region of interest (blue regions in Fig. 2), which represents

the FOV in DIC measurements, exported from ABAQUS to Wolfram Mathematica, where the MCSs are calculated. Let

us note that DIC cannot measure the edge region of the specimen, therefore we also excluded the derivatives from a

thin section, which runs alongside the boundaries. The width of this section corresponds to 17 px, when the 2 Mpx

cameras acquire images of the predicted region of interest. This yields approximately a width of 0.7% of the height

(major dimension) of the field of view h. MCSs are applied to each of the presented experiments. The result is a large

population of identified variations of material parameters ΔΔθθ.

Means and standard deviations for all specimens are shown in Fig. 4 using bar charts for each specimen and each

material parameter. Fig. 4 shows that in almost all cases means are rather small, but the differences in standard

deviations are significant. Let us now analyse the reasons for differences among experiments. Elastic modulus Exx has

the narrowest confidence interval in a standard uniaxial test (a), corresponding to the predominant uniaxial loading

state (longitudinal direction). Similar experiments for the identification of Exx are the ones with predominant axial

stress, which corresponds to the specimens from (b) to (f). T-shaped specimen (g) perform best for the identification

of elastic modulus Eyy because in these experiments the applied load provokes states in the specimen, which include

pronounced loading in the transverse direction. On the contrary, the pure uniaxial (a) and open-hole experiment (b)

exhibit enormous uncertainty, which is the consequence of negligible transverse stresses. Poisson's ratio would be

best identified with pure uniaxial or notched specimens corresponding to the dominant uniaxial loading state in the

majority of the FOV. The Iosipescu shear tests after Grediac et al. [20] and Avril and Pierron [21] perform best for

shear modulus identification because the shear stresses are most predominant. Confidence intervals with off the chart
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values also reveal that some experiments are not convenient for the identification of those parameters and that the

identification cannot give reliable values.

Fig. 4. CalculatFig. 4. Calculated means and standared means and standard ded deviations of matviations of material parerial parametameters (serrers (serratated edges red edges reprepresent off-the-chartesent off-the-chart

vvalues)alues)

Mesh discretization and parameter variation can introduce some numerical error which affects sensitivity matrix

calculation. We examined both influences by decreasing mesh size for a factor four and varying the parameters for

30% off from the used values. The analyses showed preservation of the ratio between means and standard deviations

of the parameters, meaning that the appropriateness of individual specimen designs for the identification of particular

material parameters is maintained.

4 Conclusions4 Conclusions

We monitored the uncertainty data processed from the DIC system in the past three years for over 850 heterogeneous

test measurements, without any classification of the experiment types. For each heterogeneous test, we analyzed

uncertainty from a pair of pictures taken before a specimen loading. From the images, we analyzed the error

distribution of the measured displacement field, which closely follows the normal distribution with a specific mean

value and standard deviation. The process was repeated for all 850 tests, from where a set of mean values and standard

deviations was obtained. From the sets new distributions were constructed, where it was found, that the mean value

and standard deviation closely follow a normal and log-normal distribution, respectively. Furthermore, we investigated

how quantified uncertainties propagate throughout the FEMU-based identification procedure, resulting in a confidence

interval assessment. For this reason, we firstly analyzed the influence of DIC data perturbations on model parameters,

where the parameter sensitivity matrix plays the central role, which is unique to a heterogeneous test design and

loading configuration. Secondly, to assess the parameters’ confidence intervals, we conducted MCSs to simulate the

optical system error propagation throughout the identification chain. Finally, we compared 10 different heterogeneous

specimen designs from the viewpoint of characterized optical system error propagation throughout the orthotropic

elastic material parameters’ identification chain.

The methodology enables the assessment of individual parameters' confidence intervals and the intensity of a DIC bias

and random error propagation through the inverse identification procedure. The results reveal the appropriateness of

individual specimen designs for the identification of particular material parameters.
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