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AAbstrbstractact.. Laser powder bed fusion (LPBF) is an additive manufacturing technique that is widely used to produce

AlSi10Mg parts with a good strength-to-weight ratio and a very fine microstructure thanks to high cooling rates.

However, to obtain better mechanical properties, a good ductility and higher fatigue resistance, post-treatments

have to be performed. In this work, friction stir processing, a thermomechanical post-treatment, is applied on

an as-built plate of 5 mm of thickness. This post-treatment leads to a decrease of the percentage of porosities

and to modification of the microstructure: globularized Si-rich particles are surrounded by the α-Al phase.

The method presented uses nanoindentation to determine the behavior of the different phases present in the

material for future numerical simulations and a better understanding of the relation between microstructure

and fatigue strength. The Bucaille method [1] is used to determine the links between indentation curves

and elastoplastic parameters. Three different pyramidal indenters are used: Berkovich, cube corner and an

indenter with a centerline-to-face angle of 50 degrees. From the loading / unloading curves and after post-

processing, the Young's modulus, the representative strain and the associated stress are determined. With the

three different indenters and their three true stress/true strain points, a good description of the elastoplastic

behavior can be defined.

KKeeywyworordsds. Laser Powder Bed Fusion, AlSi10Mg, Nanoindentation, Elastoplastic Behavior

1 Intr1 Introductionoduction

Additive manufacturing of metal parts is becoming more and more widespread because it allows greater part design

optimization compared to conventional manufacturing techniques [2]. This optimization results in weight savings that

are highly appreciated in many fields, particularly in the aerospace and automotive industries [3].

AlSi10Mg aluminum [4] is one of the most widely used metals in laser powder bed fusion thanks to its interesting

strength-to-weight ratio. The very high cooling rate achieved in this additive technique enables obtaining a very

fine microstructure, but defects are also present, such as porosities, inhomogeneity of the microstructure or residual

stresses. The presence of these defects reduces the mechanical properties of the part [5]. In order to obtain better

mechanical properties, good ductility and higher fatigue resistance, post-treatments have to be performed. While

these are generally heat treatments, the post-treatment used in this article, friction stir processing (FSP), is of the

thermomechanical type. The advantage of this post-treatment compared to the usual heat treatments is to decrease the

percentage of porosities, which improves the fatigue properties [6].

Different methods exist to link the curves of normal force versus depth of penetration in load/discharge obtained

by nanoindentation to the elastoplastic parameters. Dao et al. [7] studied 76 combinations of elastoplastic material

properties and their indentation curves with sharp tips (conical, Berkovich and Vickers), developing functions linking
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the plastic properties of these materials and their curves. This method was completed by Bucaille et al. [1], [8] who

established a more general formula based on a finite element analysis for different indentation angles and taking

into account the friction between the punch and the material. This friction cannot be neglected for the sharpest

indenters. The method covers a larger set of indenters, cones or other shapes, including the cube corner. It has been

applied hereafter to determine the behavior of the Al matrix phase present in the material after FSP post treatment

for future numerical simulations of Representative Volume Element. The final goal is to investigate the link between

microstructure and fatigue strength. The behavior of each phase is a preliminary study. This method is already used in

a numerical article devoted to indentation of materials with globular nodules within this conference [9].

2 Mat2 Materials and methodserials and methods

An EOS M290 machine was used to manufacture AlSi10Mg plates of 150x35x5 mm. The following optimized parameters

were used: a build platform temperature of 35°C, a laser power of 390 W, a layer thickness of 30 μm, a hatch spacing

of 0.19 mm, a scanning speed of 1300 mm/s and a rotation between layers of 67°. FSP was used as post-treatment to

reduce the percentage of porosities and to break down and homogenize the secondary phase particles. A Hermle UWF

1001 H milling machine with a tool made of H13 steel was used for this process. During FSP, the tool penetrated the

AlSi10Mg plate with a plunge depth of 4.7 mm and stirred the material with a rotational speed of 1000 rpm and a

traverse speed of 500 mm/min. In order to preserve the fine Si-rich phase, only 1 FSP pass was performed [10].

The nanoindentation sample was cut perpendicular to the advance of the FSP tool. In this configuration, only the

central part of the sample has undergone the thermomechanical treatment of the FSP. The specimen is embedded and

mirror-polished. An OPS step is then carried out for 20 minutes to minimize the residual stresses due to polishing. The

microstructure is analyzed using an electron microscope and the scanning mode of the nanoindenter.

The nanoindentations were carried out using a Hysitron Ti950 nanoindenter. Three pyramidal indenters were used for

this analysis: a Berkovich indenter from Hysitron, a cube corner and an indenter with a centerline-to-face angle of 50°

(called 50° hereafter) purchased from Surface. The indentation size was chosen to be large enough to be able to analyze

the increase in load but small enough to be fully contained in the matrix. A penetration depth of 150 nm was chosen for

the Berkovich indenter and the increase and decrease in load was controlled in depth. The increase in load is carried

out in 5 seconds, followed by 5 seconds of holding then 5 seconds to decrease the load. The position of the different

indentations is chosen after a scan of the surface in order to indent only the matrix. For the other two indenters, the

depth of penetration was chosen to keep the contact area constant, to limit the indentation size effect [11]. Thus, for

the 50° and cube corner, a penetration depth of 278 and 428 nm, respectively, was chosen.

The influence of the indented zone was studied. In addition to the aforementioned targeted indentations, two grids of

10x10 indentations, separated by 5 μm, are performed in the material, one with the Berkovich indenter, one other with

the 50° one. The indented zones were therefore chosen randomly. The dispersion of the obtained results was compared

with that of the targeted indentations.

The unloading (F, h) of the indentation is assumed to be fully elastic. For an indenter having a solid of revolution

shape, Sneddon [12] has established the following link between the slope S at the beginning of this curve, the reduced

modulus E* and the contact area A projected onto the initial surface of the material:
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where the reduced modulus E* is defined by:

where E, ν and Ei, νi represent the Young's modulus and Poisson's ratio of the tested material and of the diamond used

for the indenter, respectively, with Ei = 1.14.106 MPa, νi = 0.07 and ν = 0.3 and the projection of the contact surface A

is defined by

where 𝐶0=3.√3.tan2𝛼, α being the centerline-to-face angle, C1, C2, C3, C4, etc. being coefficients taking into account

small defects of the tip.

Using equation 1, the reduced modulus E* is calculated according to the unloading slope S as

And finally, using equation 2, the Young's modulus E of the indented material is obtained as

The geometry of the indenter can be replaced by that of an equivalent conical indenter having the same projected

surface / penetration depth ratio. The relationship between α and the centerline-to-cone angle θ of the equivalent

conical indenter is

Bucaille's method is based on the loading curve of the nanoindentations (F, h) which can be modeled by:
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with F = normal force, h = penetration depth and C = constant.

On the other hand, Johnson [13] determined the following function linking the deformation representative of the

indentation test εr,θ and the angle θ (see equation 6) of the equivalent cone:

Bucaille et al [1] established the following dimensionless function linking the representative stress σr θ of the test, the

reduced modulus E* and the parameter Cθ (= C) of the indentation curve relative to a geometry of equivalent angle

indenter θ.

The values of coefficients P1, P2, P3 and P4 are listed in Table 1.

TTable 1. Pable 1. Pararametameters of the Bucaille method [1]ers of the Bucaille method [1]

The value of σr, θ in equation 9 is obtained using a solver.

3 R3 Results and discussionesults and discussion

The as-built microstructure is shown in Figure 1a. The microstructure consists of α-Al cells surrounded by a Si-rich

eutectic phase. After FSP, see Figure 1b, the microstructure consists of large globularized Si-rich particles surrounded

by α-Al phase. Figure 1c presents an image of the FSP microstructure obtained using the scan mode of the nanoindenter.

This type of image is used to determine the zones to indent, i.e., the areas where no silicon particles are visible.
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FigurFigure 1: AlSi10Mg micre 1: AlSi10Mg microstructurostructure, a: as-builte, a: as-built, b: aft, b: after FSPer FSP, c: aft, c: after FSPer FSP, using the scanning mode of the nanoindent, using the scanning mode of the nanoindenteureur

A representative sample of the curves obtained from the grids performed with the Berkovich and 50° indenters is

shown in Figure 2, left and right. A significant dispersion of the curves is observed when using both indenters, at the

beginning of the load increase (between 0 and 30 nm). When a Si precipitate is encountered, an increase in the slope

of the curve is observed, before returning to the normal slope. Depending on the number of precipitates encountered,

the load required to reach the 150 nm (278 nm for 50°) of penetration depth varied. The calculation of the Young's

modulus for the different curves shows that the mean Young's modulus obtained by this method is close to that

obtained using localized indentations (Table 2). The localized indentations are very time consuming compared to the

grid and do not offer very different results. Indeed, the localization of the indentations only allows to avoid precipitates

on the surface. However, since the indentations must be large enough to use the Bucaille method, the risk to encounter

a Si precipitate below the surface is significant. Moreover, the size of the indentation used is close to the distance

between the precipitates, which makes the precipitates on the surface very close to the indented area, influencing the

results. For the cube corner, a grid has not been realized because this tip is fragile and an important dispersion of the

curves is observed because of the higher penetration depth.

FigurFigure 2: Re 2: Reprepresentatiesentativve sample of the curve sample of the curves obtained fres obtained from the grids. Left: Berom the grids. Left: Berkkoovich, rigvich, right: 50°ht: 50°

TTable 2: Yable 2: Young modulus of α-Al matrix based on localized indentations and, foung modulus of α-Al matrix based on localized indentations and, for Beror Berkkoovich and 50° indentvich and 50° indenters, curvers, curveses

frfrom a 10x10 grid and Yom a 10x10 grid and Young modulus obtained froung modulus obtained from the tom the ten loen lowwest curvest curveses

Since the following analysis is based on the α-Al matrix data, a selection of curves has to be made. To eliminate as much

as possible the influence of Si precipitates, the lowest curves are chosen. By selecting the ten lowest curves (Table

2 – E10min), the Young's modulus decreases strongly for the two 10x10 grids while it remains stable for the targeted

indentations. The grid allows to choose the areas less influenced by precipitates, whether they are on the surface or

below. The Young's modulus obtained from the two grids and from the indentations made with the cube corner are
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compared with the value obtained from four tensile tests. These tests were carried out on samples of AlSi10Mg-FSP

material [10]. As they showed good reproducibility of the results, the average curve of these macro-tests was used

to estimate the Young macro modulus (E = 71.5 GPa) of the composite (Matrix + particles). Moreover, the slope of

the micro elasticity, evaluated by the indentations (Eave = 79.8 GPa) and corresponding to the α-Al matrix, does not

fundamentally differ from the macroscopic behavior of the material.

The curves selected to apply the Bucaille method are shown in Figure 3 for the three indenter geometries. These curves

are similar to the one chosen to compute the Young modulus. Then, the Bucaille method is applied on each curve

to determine the three representative points of the stress/strain curve and their ranges (Table 3). These results are

compared with the tensile curve shown in Figure 4 representing the elastoplastic behavior of the macrostructure.

FigurFigure 3: Nanoindentation curve 3: Nanoindentation curves used fes used for Bucaille methodfor Bucaille methodfor the Beror the Berkkoovich (a), 50° pvich (a), 50° pyryramid (b) and cube corner (c)amid (b) and cube corner (c)

indentindenterer

TTable 3: Rable 3: Results of Bucaille’s method fesults of Bucaille’s method for the diffor the differerent indentent indenters, prers, prooviding one strviding one stress-stress-strain rain reprepresentatiesentativve point (εe point (εrrepep

- σ- σrr))

The following two static laws are used to describe the hardening from the results obtained by nanoindentation: Swift's

law (equation 10) and Voce's law (equation 11).

Finite element tensile simulations on a material composed of an elasto-plastic α-Al matrix and elastic Si particles (of

size representative of Fig 1b) showed that the composite (matrix + particles) elastic limit was only slightly influenced
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by the presence of particles in the material, however the hardening curve was affected. It is the reason why the

elastic limit of the macro material was kept for the micro material. The behavior of the composite (hard particles in

soft matrix) should present increased hardness compared to pure α-Al matrix behavior. Excluding the results of the

Berkovich and 50° indenters performed only for very low indentation depth can be justified as it is well known that the

beginning of these curves is not reliable. Note that this low indentation depth was chosen to indent only the matrix. So

finally, we relied only on the minimum point determined by the cube corner to characterize the micro behavior (Table

4 and Figure 5). Voce's law gives better results than Swift's law, especially at the onset of plasticity.

FigurFigure 4: The thre 4: The three ree reprepresentatiesentativve points of the α-Al matrix fre points of the α-Al matrix from nanoindentation curvom nanoindentation curves compares compared with the macred with the macroo

curvcurve obtained fre obtained from tom tensile tensile tests[10]ests[10]

FigurFigure 5: Ve 5: Voce’s and Soce’s and Swift’s lawift’s lawwsbased on the cube corner rsbased on the cube corner resultsesults

TTable 4: Pable 4: Pararametameters of Vers of Voce’s laoce’s law and Sw and Swift’s lawift’s law obtained ww obtained when considering the minimum point dethen considering the minimum point determined bermined by they the

cube cornercube corner
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4 Conclusions4 Conclusions

To characterize the microstructure of a material, nanoindentations were performed and the Bucaille method was

applied with three types of pyramidal indenters with different angles. These three tools and this method allows to

obtain three points of the hardening curve of the matrix but only the last point was assumed reliable. Indeed, the

description of the matrix hardening behavior was mainly based on the point relating to the sharper indenter which, as

Bucaille specified, gives a better estimate of the behavior.

This study is a first step in micro characterization. The present results are currently used within exploratory simulations

of the behavior of the material composed of two phases: matrix and inclusions [9].

The following two procedures were tested: automatic indentations following a grid and manually localized indentations

in the material outside the silicon particles. The automatic procedure, much faster since the indenter works

autonomously, saves considerable time. The curves of these tests were processed by a program to easily select the

lowest curves corresponding to the behavior of the matrix. The results obtained are close to what is achieved by the

manual procedure, and even better in the case of the Young modulus.
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