
Experimental InExperimental Invvestigestigation of Pration of Process Focess Fororces and Pces and Part Quality fart Quality for Fine Blanking ofor Fine Blanking of
Stainless StStainless Steel with Inductieel with Inductivve Heatinge Heating

Ingo Felix Weiser, Robby Mannens, Andreas Feuerhack and Thomas Bergs

Ingo Felix Weiser. Laboratory for Machine Tools and Production Engineering WZL of RWTH Aachen University, Campus-

Boulevard 30, D-52074 Aachen, Germany

Corresponding author: i.weiser@wzl.rwth-aachen.de

Robby Mannens. Laboratory for Machine Tools and Production Engineering WZL of RWTH Aachen University, Campus-Boulevard

30, D-52074 Aachen, Germany

Andreas Feuerhack. Laboratory for Machine Tools and Production Engineering WZL of RWTH Aachen University, Campus-

Boulevard 30, D-52074 Aachen, Germany

Thomas Bergs. Laboratory for Machine Tools and Production Engineering WZL of RWTH Aachen University, Campus-Boulevard

30, D-52074 Aachen, Germany

Fraunhofer-Institute for Production Technology IPT, Steinbachstr. 17, D-52074 Aachen, Germany

AAbstrbstractact.. Fine blanking is a highly productive process of industrial mass production with which high quality

components in particular but not exclusively for the automotive industry are produced. The manufacturing

process faces its limits at elevated tensile strengths of the materials to be processed. Consequently, high-strength

steels can currently only be fine blanked to a limited extent. This can be overcome by lowering the flow stress

of high-strength steels by means of inductive heating. A steel of high importance especially for industries with

high hygiene standards such as medical and nutrition production is the stainless steel X5CrNi18-10 (1.4301).

As a metastable austenitic steel which can initiate cutting impact on the press through martensitization, fine

blanking of stainless steel is a challenge. X5CrNi18-10 is not a high-strength steel per se but becomes difficult to

process due to the high hardness of the martensite phase, known as transformation-induced plasticity (TRIP)

effect. Thus, in order to combine the possible advantages of the fine blanking process with inductive heating

and the important properties of stainless steel, fine blanking of this steel was investigated with inductive

heating prior to the fine blanking. The process forces and product quality properties such as die roll were

investigated and found to be advantageous in comparison to non-heated fine blanking specimens of the same

steel. The process forces and the die roll height decreased due to the heating.
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1 Initial Situation and Moti1 Initial Situation and Motivvationation

Stainless steel is crucial for many application fields as an alternative for corrosive applications, showing a growing

volume of 3 – 5 % p.a. [1]. Its non-corroding properties are important e.g. for industries with high hygiene standards

such as medical and nutrition industries, but also for applications with aggressive environmental influences such as

naval ship building or offshore wind power drives. It is increasingly used in energy and nuclear sector [2]. One of

the first developed stainless steels (Krupp Company, Germany, 1912) is up to now amongst the most frequently used

stainless steel alloys [3]. It is known under the compositional name X5CrNi18-10 (AISI 304) or the material number

1.4301, which is the first number in the class of stainless steels. The material was formerly known as V2A (short for

“Versuchsschmelze 2 Austenitisch”, experimental melt 2 austenitic). X5CrNi18-10 is not a high-strength steel per se

but becomes difficult to process due to the high hardness of the martensite phase, known as transformation-induced

plasticity (TRIP) effect. In general, work hardening is of advantage for using favorable property combinations of ductility

and strength, but in the case of X5CrNi18-10, this effect complicates the processing on account of high hardness. Due

to the importance of this material, its processability is of utmost importance. Thus, it is desirable to investigate the fine

blanking properties of this steel. A large number of investigations have been dedicated to X5CrNi18-10 both in general

and focused on forming technology. For instance, BAY investigated the material as part of a tribological system for

forming [4]. ERIKSSON and OLSSON conducted research on the galling resistance of X5CrNi18-10 sheet material using

pin-on-disc testing [5]. HETZNER ET AL. investigated the local adjustment of tribological properties for so-called sheet

bulk metal forming processes especially of X5CrNi18-10 [6]. DANIEL ET AL. did research on the lifetime of PVD coatings

of fine blanking punches with X5CrNi18-10 sheet material [7]. NEUGEBAUER ET AL. investigated the influence of a

pre-defined load on the precision cutting process of X5CrNi18-10 sheet material [8]. In terms of punching, ARSLAN and

ÖZDEMIR presented research on punch wear at punching X5CrNi18-10 [9]. EMONTS investigated punching with laser

heating support [10]. Fine blanking faces, due to the different tool concept and process guidance, different parameters

and output than punching. A promising approach, however, to mitigate many challenges of the fine blanking process

is inductive heating prior to the fine blanking process [11]. The fine blanking of inductively heated X5CrNi18-10 sheet

metal has not been subject of systematical research yet, though the process window lies within distinct boundaries [12].

2 Scientific Pr2 Scientific Problem and Matoblem and Materialserials

The objective of this research is the experimental investigation of process forces and part quality for fine blanking of

stainless steel with inductive heating. The interactions between metal sheet temperatures in the moment of cutting

and process forces are to be investigated as well as the changes of the part quality in terms of dimensional accuracy,

die roll and cut surface state.

The elemental composition of X5CrNi18-10 is of utmost importance for fine blanking. The compositional name suggests

0.05 % C, 18 % Cr and 10 % Ni. In Table 1, the composition of X5CrNi18-10 is given more in detail according to the

standard DIN EN 10088-2 [13]. In the previous section, the importance of the elemental composition of X5CrNi18-10

and its consequences for the fine blanking process have been explained. As the elemental composition of the specimens

is of high importance, they were investigated using optical emission spectroscopy. The results can be found in Table 1.

TTable 1. Elemental composition of the X5CrNi18-10 specimens detable 1. Elemental composition of the X5CrNi18-10 specimens determined bermined by optical emission spectry optical emission spectroscoposcopy iny in

comparison tcomparison to the nominal vo the nominal values as defined in the standaralues as defined in the standard DIN EN 10088-2 [13]d DIN EN 10088-2 [13]
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As can be seen in Table 1, the specimens do consist of X5CrNi18-10, correspond to the standard and are suitable

for forming as a consequence of the relatively high portion of austenite stabilizing elements Cu and Ni. It has to be

considered that the results of optical emission spectroscopy are in general less accurate than the results of the melt

composition analysis. Furthermore, after an annealing process, some elements as Sulfur tend to appear increased in

comparison to the melt composition analysis depending on the annealing process, as optical emission spectroscopy

only investigates the surface of a specimen. The mechanical properties were tested in tensile tests and were determined

as Rp0.2 = 271 MPa and Rm = 608 MPa.

The importance of the elemental composition as presented in Table 1 lies in the specific properties of X5CrNi18-10.

They are unusual for a steel material: corrosion-resistant, non-ferromagnetic and not hardenable by heat treatment

[3]. As a metastable austenite, X5CrNi18-10 can turn to martensite when processed with a forming process. This

results in a magnetization of the non-ferromagnetic austenite and, more important for the forming process, in a sudden

impact on the forming press known as cutting impact. The metal lattice was investigated by means of metallographic

cross-sections and is given, together with the SCHAEFFLER diagram for X5CrNi18-10, in Figure 1.

FigurFigure 1. Cre 1. Cross-section of specimens a) with standaross-section of specimens a) with standard and b) with Berd and b) with Beraha II-etaha II-etching and c) SCHAEFFLER diagrching and c) SCHAEFFLER diagram witham with

marmarking point fking point for X5CrNi18-10. A: Aor X5CrNi18-10. A: Austustenitenite, Fe, F: F: Ferriterrite, M: Marte, M: Martensitensite [14]e [14]

As can be seen in Figure 1, the specimens show an austenitic metal lattice with some anisotropy. The austenite can

be recognized by characteristic twin structures in Figure 1a). The Beraha II-etching in Figure 1b) shows austenite in

dark and blue colors. The needle-like microstructure of martensitic parts can not be found in the cross-sections. The

anisotropy in horizontal direction is due to the hot rolling process in which the sheet metal was produced prior to the

experiments.

The stability of austenite depends strongly on the portion of nickel equivalents in the X5CrNi18-10 alloy, visible in

the SCHAEFFLER diagram in Figure 1c). Austenite stabilizing elements are Cu, Ni, Co, and Mn [15]. As a consequence,

the bigger the portions of those elements are in the X5CrNi18-10 alloy (within the limits of the standard), the better

it can be formed and especially fine blanked, as the risk of turning into martensite diminishes. In conclusion, the

specimens are well apt for fine blanking experiments. Cutting impact is not expected to a greater extend, as the peril of

martensitization is comparatively low and not enforced by the servomechanical press.
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3 Appr3 Approachoach

In order to meet the objective of this research, the experiments were performed following the process route of

inductive heating and subsequent fine blanking of prepared specimens which has already been described [10]. Due

to the specific properties of X5CrNi18- 10, oxidation effects as they do often accompany inductive heating are not

expected [16]. The experiments were performed using an iew TTH25 inductive heating device and a servo mechanical

Feintool XFT 2500speed servo mechanical fine blanking press at a cutting velocity vc = 50 mm/s. In every experiment,

a specimen was heated using the induction heating device, then transferred to the fine blanking press and fine blanking

was performed. The temperature measurement included two pyrometers of type Sirius SI23 controlling the inductive

heating device. The temperature changes during the experiments were recorded using a thermocouple fixed to each

specimen. The heating process is presented in Figure 2.

FigurFigure 2. Inductie 2. Inductivve heating a) in standare heating a) in standard photd photogrographaphy and b) in thermal imaging photy and b) in thermal imaging photogrographaphy with unit °Cy with unit °C

Six different target temperatures between 150 °C and 400 °C in steps of 50 °C each have been investigated, enhanced

by reference experiments at room temperature without heating, starting at low temperatures and increasing the

temperature step by step. The upper boundary of 400 °C was chosen in order to safely remain below the recrystallization

temperature which is expected around 560 °C for X5CrNi18-10. At those temperatures, no recrystallization effects are

to be expected [17]. The sheet thickness was s = 6 mm. All experiments have been repeated four times. The process

forces have been measured as well as the temperatures. An experimental geometry “arrow part” was used which is

specially designed for fine blanking experiments. The quality properties of the fine blanked parts have been measured

according to the standard VDI 2906 [18]. This is depicted in Figure 3.
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FigurFigure 3. “e 3. “ArrArroow part” geometry a) with quality prw part” geometry a) with quality properties b) accoroperties b) according tding to the standaro the standard VDI 2906 [18]d VDI 2906 [18]

A twofold falling fine blanking layout was used. This layout can be implemented in continuous experimentation or in

single-stroke experiments, as it was for this paper. Twofold falling experiments provide the advantage that more parts

are available especially for destroying analysis methods and thusly extend the data basis. The fine blanking layout is

shown in Figure 4.

FigurFigure 4. Te 4. Twwofofold fine-blanking laold fine-blanking layyout “arrout “arroow part” fw part” for continuous eor continuous experiments a) and fxperiments a) and for singor single-strle-strokoke ee experimentsxperiments

b), wb), which which was used fas used for this paperor this paper. The fine blanking ca. The fine blanking cavities arvities are re refeferrerred ted to as C1 fo as C1 for the ror the rear left caear left cavity and C2 fvity and C2 for theor the

rigright frht front caont cavityvity

As can be seen in Figure 4, the fine blanking layout does provide enough clearance between the cavities to ensure that

there is but little mutual influencing between the fine blanking cavities [19]. All experiments have been performed

using the same set of tool elements, i.e. punch, blank holder, counter punch, and guide plate. The tool concept is

presented in Figure 5.
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FigurFigure 5. Fine blanking te 5. Fine blanking tool with detail prool with detail presentation of actiesentation of activve elements and die re elements and die rolloll

As can be seen in Figure 5, the tool concept used a standard fine blanking setup consisting of punches, guide plate,

counter punches and blank holder. A circumferential V-ring with three gaps was adapted to the blank holder at both

cavities.

4 R4 Resultsesults

During the experiments, the process forces were measured as a main objective for fine blanking lies in the reduction

of process forces with the aim to process high-strength steels in a reliable way. Results for one stroke at cutting

temperature Tc = 24 °C and Tc = 377 °C are given in Figure 6.

FigurFigure 6. Punch fe 6. Punch fororce curvce curve at cutting te at cutting temperemperaturature Te Tcc = 24 °C and T= 24 °C and Tcc = 377 °C= 377 °C

In Figure 6, several observations can be made. Firstly, the punch forces are reduced at higher cutting temperature.

The maximum punch force is diminished by 33 % in comparison to fine blanking at room temperature. Secondly, the

course of the punch force is at a higher temperature more homogenous. In general, the punch force shows different
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sections: closing of the tool (growing punch force), start of cutting (maximum point), cutting (decreasing force, due

to the falling cutting resistance as a result of the increasingly thin remaining sheet metal at the cutting line) breaking

of the burr (small peak) and subsequent power drop to zero. Hence, the observation is that the punch force shows a

more homogenous course during the cutting. For a better understanding, the punch force maxima of all experiments

are presented in Figure 7.

FigurFigure 7. Punch fe 7. Punch fororce maxima at diffce maxima at differerent cutting tent cutting temperemperaturatures with poles with polynomic apprynomic approoximation function of 4ximation function of 4thth grgradeade

The development of the punch force maxima as depicted in Figure 7 shows some noticeabilities. Firstly, the punch force

maxima do indeed decrease with growing cutting temperature. Secondly, the decrease is considerable and amounts to

33 % lower values at a cutting temperature Tc = 377 °C compared to the room temperature reference. Thirdly, the

decrease is not linear, as would be suggested by the temperature terms in JOHNSON-COOK flow stress model [20].

Instead, it shows an asymptotic decrease with a second peak between Tc = 250 °C and Tc = 350 °C. In addition to the

process forces, the part quality in terms of dimensional accuracy, die roll, and cut surface state was measured. The first

focus of investigation was the macro geometric dimensional accuracy. The results are shown in Figure 8.
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FigurFigure 8. Macre 8. Macroscopic dimensional accuroscopic dimensional accuracyacy, measur, measured at thred at three points and on the twee points and on the two cao cavities: Dimension 1 - lengthvities: Dimension 1 - length

a), Dimension 2 - width b), Dimension 3 – length, on the opposita), Dimension 2 - width b), Dimension 3 – length, on the opposite side c), and fine blanking lae side c), and fine blanking layyout with visualization ofout with visualization of

the measuring points d)the measuring points d)

As can be seen in Figure 8, the reference experiments at room temperature generate dimensions slightly above the

nominal values. With increasing cutting temperature, the dimensions decrease. In this case, there is no obvious reason

to suggest non-linear behavior. In consequence, the values show thermal shrinking, which will, in absence of a justified

better assumption, be considered linear. A very important value for assessing fine blanking processes is the die roll

[21]. It was measured at the fine blanked specimens using an optical method of structured-light 3D scanning with

subsequent comparison to the nominal contour described by VOIGTS ET AL. [22]. The results are given in Figure 9.

FigurFigure 9. Die re 9. Die roll heigoll height hdr a), die rht hdr a), die roll width woll width wdr b) of the fine blankdr b) of the fine blanked specimens, with a photed specimens, with a photogrographaphy (©Ty (©Tobiasobias

Kaufmann, WZL) with die rKaufmann, WZL) with die roll maroll marking c)king c)
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As can be seen in Figure 9, the die roll slightly diminishes with increasing cutting temperature. As a low die roll is

a significant quality requirement, heating prior to the fine blanking indicates in this case an increase in part quality.

As a last point, the state of the cut surface was investigated using tactile topography measuring and light microscopy

imaging. Exemplary results are given in Figure 10.

FigurFigure 10. Lige 10. Light micrht microscoposcopy images of the cut surfy images of the cut surface (left) and tace (left) and topogropographaphy measury measurement (rigement (right) at specimens withht) at specimens with

cutting Tcutting Temperemperaturatures a) Tes a) Tcc = 24 °C, b) T= 24 °C, b) Tcc = 199 °C, c) T= 199 °C, c) Tcc = 288 °C, and d) T= 288 °C, and d) Tcc = 377 °C= 377 °C

As can be seen in Figure 10, the cut surface of the specimens, although it shows in each case a smooth cut portion

of 100%, is slightly different. What can be seen as a color change in the light microscopy images turns out to be a

burr on the surface in a dimension of up to approx. 10 μm height. This phenomenon decreases with growing cutting

temperature.

5 Discussion5 Discussion

As described in the previous section, the first observation gained from the experiments is a significant decrease of

fine blanking punch forces with increasing cutting temperatures. This is not surprising, as the effect of decreasing

mechanical strength with increasing temperatures is well known for steels and e.g. stated by DEHGHAN-MANSHADI

ET AL. [24] and KIM and YOO [24] for X5CrNi18-10. However, the decrease does not behave linearly. This indicates

that flow models as JOHNSON-COOK do not suffice for a consideration of fine blanking with inductive heating. This

was already stated by LIAN ET AL. [25] and can be supported by the results of the experiments performed here. The

non-typical behavior of the values of maximum punch force between Tc = 250 °C and Tc = 350 °C can be explained

by dynamic strain aging mechanisms. As CHO, YOO and JONAS found out, dynamic strain aging occurs in X5CrNi18-10

primarly between 900 °C and 1,100 °C due to the substitional elements Cr and Ni. Strain aging due to the interstitial

elements C and N can, however, occur between 150 °C and 300 °C [26]. NIKITIN stated that a temperature increase of

50 °C suppresses the forming induced martensite formation. Furthermore, he found out that between 200 °C and 500

°C dynamic and static strain aging can occur and stabilize the dislocation structures, activating diffunding atoms of Cr

above 400 °C [27].

The part quality increased due to inductive heating. Linear shrinking due to heating has to be taken into account but

can be controlled by constructive measures according to PETERLI [28]. Decreasing die roll and decreasing roughness

of the cut surface are advantageous in terms of product qualities of fine blanked parts. Furthermore, a general heating

of sheet metal minimizes fluctuations of the process temperatures and contributes to reliable and predictable process
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guidance.

6 Conclusion and Outlook6 Conclusion and Outlook

In conclusion, the following can be stated. Inductive heating of stainless steel sheet metal prior to fine blanking is

of advantage. It lowers the process forces and improves part quality as well as process reliability. In the special case

of metastable austenitic steel, martensitization can be suppressed by heating. In total, inductive heating prior to fine

blanking is a promising approach, which should be investigated further, including more classes of sheet metal.
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