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AAbstrbstractact.. The high-potential of lightweight components consisting of similar or dissimilar materials can be

exploited by Solid-State Joining techniques. Whereas defects such as pores and hot cracking are often an issue

in fusion-based joining processes, via solid-state joining processes they can be avoided to enable high-quality

welds. To define an optimal process window for obtaining anticipated joint properties, numerous time and cost

consuming experiments are usually required. Building a predictive model based on regression analysis enables

the identification and quantification of process-property relationships. On the one hand, mechanical property

and performance predictions based on specific process parameters are needed, on the other hand, inverse

determination of required process parameters for reaching desired properties or performances are demanded.

If these relations are obtained, optimized process parameter sets can be identified while vast numbers of

required experiments can be reduced, as underlying physical mechanisms are utilized. In this study, different

regression analysis algorithms, such as linear regression, decision trees and random forests, are applied to

the refill Friction Stir Spot Welding process for establishing correlations between process parameters and

joint properties. Experimental data sets used for training and testing are based on a Box-Behnken Design

of Experiments (DoE) and additional test experiments, respectively. The machine-learning based regression

analyses are benchmarked against linear regression and DoE statistics. The results illustrate a decryption of

relationships along the process-property chain and its deployment to predict mechanical properties governed

by process parameters.

KKeeywyworordsds. Solid-state joining, Refill FSSW, Linear Regression, Decision Tree Regression, Random Forest

Regression, SHAP Value, Explainable Machine Learning

1 Introduction

Vast improvements of light-weight structures to reach weight-savings in transportation industries originate from the

ubiquitous scientific, economical and societal demand to reduce the fossil-fuel consumption and cost as well as to

decrease the emission of green-house gases [1]. Driven by the weight-saving benefits when combining unique physical
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and mechanical characteristics of different metallic alloys, manifold combination of similar and dissimilar materials

are joined. The efficient joining of similar or dissimilar materials via solid-state joining processes can enable weight-

savings, since various combinations of similar or dissimilar metallic alloys that are widely used for manufacturing of

large-scale structures in automotive and aerospace industries, can be welded. In particular, through the refill Friction

Stir Spot Welding (refill FSSW) process, numerous solidification problems such as pores and cracks are avoided and

high-quality joining of materials that are even considered as “unweldable” are enabled. The refill FSSW process was

developed and patented by Helmholtz-Zentrum Geesthacht (HZG) [2,3] and many different material combinations in

similar [4,5] and dissimilar joint configurations, such as Al/Mg [6,7], Al/steel [8,9] and Al/Ti [10,11], were already

welded.

Conduction of regression analyses with machine learning algorithms to build predictive models based on data can be

a powerful and efficient alternative in comparison to calibrating and validating analytical models or numerical high-

fidelity models. In the fields of materials mechanics, the application of machine learning and data mining approaches

has been reviewed in [12] to discuss various examples on the identification and utilization of relationships along the

process-structure-property-performance chain, enabling further understanding of underlying physical mechanisms.

For classical programming, specific rules are explicitly defined on input-data processing to produce desired answers,

whereas for machine learning algorithms, answers are trained to be related to input-data through learning of necessary

rules. Consequently, when those rules are identified via machine learning algorithms, applied to new data, the resulting

answers can be new and original [13].

Yamin et al. [14] investigated the refill FSSW process to identify relationships between process parameters and the cross

tensile strength (CTS) for similar aluminum alloys. Based on a Box-Behnken Design of Experiments (DoE), statistical

analysis and the response surface methodology were used to establish an analytical model for the prediction of CTS.

An interpretation on how the different process parameters influence the CTS was provided, which was only based

on linear regression. The aim of this study is to expand this perspective via the deployment of non-linear prediction

models. Therefore, different non-linear machine learning algorithms are used to build an accurate predictive model

to foresee the CTS of refill FSSW AA7075-T6 joints. For further improvement of the joining process, it was targeted

to build a prediction model with lower prediction errors than the commonly used analytical model based on linear

regression. In order to evaluate and select the most accurate model, a comparison of the different employed algorithm

is drawn and an interpretation is provided.

2 Refill Friction Stir Spot Welding

In the solid-state joining process of refill FSSW, a non-consumable tool composed of two rotating parts is utilized in

combination with a probe and a sleeve, as well as a stationary clamping ring to join two or more similar or dissimilar

materials in lap configuration. Two variants of the process can be implemented, depending on the plunging part of

the tool being the sleeve or the probe. The most used variant is the sleeve plunge process variant, where, initially, the

to-be-joint materials are clamped against a backing anvil via a clamping ring whereas sleeve and probe start to rotate

uni-directionally. Translational movement is executed on the rotating sleeve and probe move in opposing directions.

Due to the rotating sleeve, plastic deformation is introduced and frictional heat is generated leading to plasticizing of

the materials. The soft material is plunged and squeezed by the sleeve, filling of the cavity that was left by the retracted

probe. Next, the sleeve is retracted back to the plate’s surface and the displaced material is forced to completely refill

the joint by the pin. Ultimately, the work-piece is released by the tool. The process is controlled through three process

parameters: rotational speed (RS) in min-1, plunge depth (PD) in mm and plunge speed (PS) in mm/s. For more details

on the refill FSSW process, the interested reader is referred to [8].
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3 Regression analyses

For the performance of regression analyses to enable the prediction of the CTS, a number of different regression models

are implemented. They can be categorized into three main approaches: linear regression, decision tree regression and

random forest regression. In a machine-learning context, regression analysis is a supervised learning task, where the

outcome is known. A brief explanation of the utilized regression analyses techniques are provided in the following.

3.13.1 Linear rLinear regregressionession

Via linear regression, independent input variables can be mapped to dependent output variables by adjusting linear

weights. Weight adjustment is realized through the minimization of the residual sum of squares ∑ N
i=1 εi

2 between

true outputs and predicted outputs by the linear function. The prediction of the dependent output variable is

computed with:

where w⃗ is the weight vector, ε is the error, Φ( x⃗)=[1,x1,...,xn] is the 1st-order basis function and η is the number

of samples. For linear regression of higher order , weights remain linear and are also “learned” via minimization of

the least-squares-error, similar to 1st-order linear regression; however, the basis function is expanded by including

higher-order polynomials in the form of: Φ( x⃗)=[x1,x1
2,...,xn

d]. Ultimately, predictions based on linearly approximated

relationships between inputs and outputs can be performed.

3.2 Decision tr3.2 Decision tree ree regregressionession

A decision tree regression (DTR) model is based on the definition of simple and as few as possible decision rules

to predict the desired output based on provided input. The hierarchical organization of those rules composes the

structure of a decision tree, consisting of chains of nodes, where values are differentiated with respect to being above

or below a threshold value [15]. The training of a DTR consists of two main stages. First, the predictor space, i.e. the

available output targets of provided input values (X1,X2,…,Xp), is separated into discrete, non-overlapping J number of

regions (R1,R2,…,RJ). These regions are defined with respect to minimizing the residual sum of squares:

with yi as the i-th output and ŷRj as the mean output of the training set generated for the j-th region based on the

provided input. It would be infeasible to consider every possible partition of the feature space into J regions; therefore,

a top-down recursive binary splitting is performed. There, the split of the predictor space into regions {X|Xj < s} and

{X|Xj ≥ s} is selected based on a predictor Xj and a cutpoint s, respectively. These regions are considered as the decision

rules for the minimization of the residual sum of squares. Second, thereafter, for any input value that is assigned to

the same region Rj , an identical prediction ŷRj, i.e. the mean of output values in the training data set that fell into that

region, is computed [16].
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3.3 R3.3 Random fandom fororest rest regregressionession

Random forest regression (RFR) models are considered ensemble methods as they consist of numerous decision

trees. The prediction values of the individual trees are averaged to yield the output prediction values of the RFR.

Internally, each tree node is split with respect to features that are randomly selected, which is governed by an

independently sampled random vector with an identical distribution for all trees. As a result, every tree is unique, since

the input order of the data is randomized (random feature). Through an increase of the number of trees within a RFR,

the prediction average is converging during training [17].

In addition to a normal RFR, an optimized variant represents a method called boosted RFR. Boosting is an

ensemble technique where new models are added to correct the errors made by previous models through weighting

their predictions [18]. In statistical terms, boosting is a stage-wise additive model, where the building blocks are weak

learners, in this case decision tree regression. After each iteration of a trained tree, the residuals are given to a new

tree, thus training specifically in the areas of the parameter space which performed poorly before. The combined model

enables approximations of non-linear functions [19].

4 Methodology

4.14.1 Design of ExperimentsDesign of Experiments

The utilized training and testing data for the employed regression models are taken from [11], see Table 1. The data was

generated via experiments based on Box-Behnken DoE of refill FSSW of thin sheets of the aluminum alloy AA7075 with

dimensions of 0.6 mm in thickness, 50 mm in width and 150 mm in length, as well as in lap configuration according to

ISO 14272:2000. The test data set (provided in Table 2) contains mostly parameter combinations that lead to high CTS

values, since this is the mechanical property domain of interest from an engineering point of view.

TTable 1. Dataset used fable 1. Dataset used for tror training, as published baining, as published by Yy Yamin et al. [14].amin et al. [14].
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TTable 2. Dataset used fable 2. Dataset used for tor testing, as published besting, as published by Yy Yamin et al. [14].amin et al. [14].

4.24.2 RRegregression modelsession models

The 1st and 2nd order linear regression, the decision tree regression and the random forest regression were

implemented using the package Scikit-learn [20]. For the decision tree regression, maximum depth values, i.e. the

number of hierarchical nodes, were not constraint. The default implementation of the random forest regression, every

tree was built with a bootstrapped sample of the size of the training data, using 14 trees for the forest. Due to the

stochastic nature of the construction of a forest, the forest was repeated 5000 times and the mean values of prediction
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was extracted and used for the subsequent analysis. The package XGBoost [21] was used for the gradient boosting

RFR algorithm (xgbRFR), with 3 trees, a learning rate of one and 50 rounds of boosting. Here repeating the algorithm

always converged to the same result.

4.34.3 ShapelShapely Ay Additidditivve Explanation Ve Explanation Valuesalues

To enable interpretations of the predictive models and to evaluate the importance of the different features for each

model, SHapely Additive exPlanation (SHAP) values [22], which are based on the game-theory concept of Shapely

values, are utilized. In this analogy, the reproduction of the model outcome represents the game, whereas the features

considered by the model represent the players. While Shapely values quantify each player’s contribution to the game,

SHAP values quantify each feature’s contribution to the model’s prediction. One game is equivalent to one observation/

prediction. In particular, the importance of a single feature is determined via the consideration of all possible

combinations of features. Ultimately, the SHAP value of each feature summed up over all available observations

represents the difference between the model’s prediction and the null model where no feature is assumed to exert any

influence on the observations. Features with large absolute SHAP values are important. Advantages of SHAP values are

their theoretical foundation in game theory and fast implementation for tree-based models, which allows for efficient

global model interpretations [23]. Disadvantageously, interpretations can also be misleading as biases remain hidden

[24]. In this work, the SHAP library proposed by Lundberg et al. [25] is used as implementation of a SHAP value

approximation. The importance and dependency of features are plotted according to [26]. To enable a comparison

of the feature importance on the models, the features of training and test data sets remain identical for all models,

consisting of nine features: RS, PD, PS, RS2, RSxPD, RS xPS, PD2, PDxPS and PS2, except for 1st order linear regression,

inherently, where only 1st order features RS, PD and PS serve as input.

5 Results and Discussion

5.15.1 Model prModel predictionsedictions

The CTS predictions of AA7075-T6 refill FSSW joints via the trained regression models are compared, tested and

discussed. First, all models are trained and the prediction performances are evaluated on training and test data set.

The results of the prediction performances of the employed regression models, with respect to the determination

coefficients R2, are shown in Table 3. DTR can be considered as the best prediction model, since an R2 value of 99.7

% is reached on the training set, while a similar R2 value of 98.7 % is reached on the test set; thus, the lack-of-fit

amounts to 0.3% on the training set and to 1.3 % on the test set. As second best prediction model, boosted RFR

performed predictions with an R2 of 99.7 % on training but only 94.6 % on the test data set, which indicates a slight

overfitting on the training data and decreased ability to generalize well. In contrast, R2 values for the ordinary RFR

amount to 86.7 % on training set and to 88.36 % on test set. In comparison to the RFR, the increased hypothesis space

in the xgbRFR where the error of the contained trees is passed on to the subsequent tree during training causes better

performance on the training set and improved ability to generalize well. Due to the iterative nature of recurring training

on the residuals of the combined learners, boosted forests (xgbRFR) are also able to learn non-linear relationships,

which seem to be contained in the data because predictions by linear regressions exhibit relatively low determination

coefficients, respectively, which indicates less good prediction performance. In particular, predictions with 2nd order

linear regression perform with 90.4 % and 87.7 % for R2 on training and test sets, respectively; thus, the lack-of-fit

amounts to approximately 10 %, which is similar and in agreement with results shown in [14]. Prediction results

of 1st order linear regression exhibit the lowest R2 values on both training and test data sets with 55.9 % and 48.4

%, respectively. Hence, machine learning models DTR and boosted RFR outperformed linear regressions with respect
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to superior determination coefficients R2. A juxtaposition of predicted CTS values and true/desired values on both

training and test set is provided in Figure 1 a), which illustrates the trend reported in Table 3. In Figure 1 b), the

absolute CTS values of the prediction models as well as the values of the experiments and the corresponding standard

deviations are shown. Even though it was demonstrated that the ML algorithms are outperforming the linear methods,

the ability of the ML models to generalize could still be limited due to the scarce data situation.

TTable 3. Detable 3. Determination coefficients Rermination coefficients R22 ffor the diffor the differerent rent regregression analession analyyses models 1ses models 1stst and 2and 2ndnd ororder linearder linear

rregregressions, decision tressions, decision tree ree regregression (Dession (DTR), rTR), random fandom fororest rest regregression (RFR) and Xession (RFR) and XGBoostGBoosted RFR (xed RFR (xggbRFR) onbRFR) on

trtraining and taining and test data setsest data sets..

Fig. 1. PrFig. 1. Prediction perfediction performance of emploormance of employyed red regregression models 1ession models 1stst and 2and 2ndnd ororder linear rder linear regregressions, decision tressions, decision treeee

rregregression (Dession (DTR), rTR), random fandom fororest rest regregression (RFR) and Xession (RFR) and XGBoostGBoosted RFR (xed RFR (xggbRFR): (a) PrbRFR): (a) Predictedicted ved vs true vs true values of CTSalues of CTS

in N (b) tin N (b) test sample prest sample predictions and eedictions and experimental vxperimental values (Exp.) with ealues (Exp.) with experimental standarxperimental standard ded deviations (Exp.stviations (Exp.std.ded.devv.)..).

5.25.2 Model intModel interprerpretationsetations

To provide an explanation on each model prediction, the feature importance for DTR, RFR, xgbRFR and 2nd order

linear regression is shown in Figure 2. The ascending features order is in accordance to their respective average

impact on model output magnitude (mean of absolute SHAP values), i.e. feature importance. DTR represents the

simplest model, as only five features are considered important, generating the highest determination coefficient R2;

thus, exhibiting best prediction performance among all models. For xgbRFR, RFR and 2nd order linear regression, the

quadratic feature PD2 is most important, respectively. For xgbRFR, eight features are denoted with means of absolute

SHAP values above zero; therefore can be considered important. Whereas for RFR and 2nd order linear regression, all

nine features are important to some extend. There is also an increasing number of features considered relevant from

DTR, to xgbRFR and to RFR because the forests are based on variations of randomly selected features used for the

containing trees and more features are considered important, as they are inevitably composing the average, i.e. the

output, of the forests.
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Fig. 2. SHAP fFig. 2. SHAP featureature importance of emploe importance of employyed red regregression models: (a) Decision tression models: (a) Decision tree ree regregression (Dession (DTR) (b), xTR) (b), xg-boostg-boosteded

rrandom fandom fororest (xest (xggbRFR), (c) rbRFR), (c) random fandom fororest (RFR), and (d) 2est (RFR), and (d) 2ndnd ororder linear rder linear regregression.ession.

In Figure 3, the feature values (from low to high) are assigned to their impact on the model outputs. When comparing

the tree-based models (a-c) to the 2nd order linear regression (d), it can be seen that the former exhibit non-symmetric

distributions of SHAP values in relation to the zero-axis, whereas the latter displays a symmetric distribution. On the

one hand, feature values that are either very low or very high carry similar impact on the 2nd order linear regression

model output. On the other hand, whether a feature value is highest or lowest makes a difference on the impact on the

tree-based models output.

Fig. 3. SHAP fFig. 3. SHAP featureature dependency of emploe dependency of employyed red regregression models: (a) Decision tression models: (a) Decision tree ree regregression (Dession (DTR), (b) xTR), (b) xg-boostg-boosteded

rrandom fandom fororest (xest (xggbRFR),bRFR), (c) r(c) random fandom fororest (RFR), and (d) 2est (RFR), and (d) 2ndnd ororder linear rder linear regregression.ession.

The detailed structure of the best-performing DTR and the corresponding specific decisions determined by the

model to accurately predict CTS are illustrated in Figure 4. The initial decision of the DTR is based on the plunge depth

PD being above or below 0.6 mm, which is equivalent to the sheet thickness. Furthermore, it can be inferred, which
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specific process parameter combinations lead to particular CTS, similar to results obtained from the response surface

methodology in [14]. For example, setting PD above 0.6 mm and RS below 1875 min-1, yields CTS values above 498 N.

The number of leafs, i.e. number of final nodes, in the DTR corresponds to the number of different parameter sets in

the Box-Behnken DoE. Since the MSE equates to zero in all single-sample leafs, most training samples were memorized

by the trained DTR, reasoned by the extremely small training set size. As a result, a test prediction with a parameter

combination unseen by the DTR during training is assigned the training sample output value which happens to be

closest to the one of the test sample. Ultimately, application of a DTR leads to an improved R2 in comparison to linear

regression and can deliver another perspective on identified feature importance to predict CTS, which was previously

hidden when only using linear models.

Fig. 4. Decision trFig. 4. Decision tree ree regregression (Dession (DTR) model fTR) model for pror predicting CTS based on predicting CTS based on process parocess parametameters: Rers: Rotational speed (Rotational speed (RS),S),

plunge depth (PD) and plunge speed (PS).plunge depth (PD) and plunge speed (PS).

6 Conclusion

In conclusion, it was shown that the utilization of non-linear machine learning models to perform regression analysis

can be beneficial with respect to achieving low prediction errors, especially in comparison to purely linear regression

models. In case of this study, DTR was selected as the best model to predict CTS based on the Box-Behnken DoE data set

used for training. Exploitation of such an explainable machine-learning algorithm provides additional understanding

about the process and allow for inference on importance of process parameters and their values for prediction of

mechanical properties with low prediction errors.
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