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AAbstrbstractact.. Metallization is a common strategy employed to enhance the electrical and thermal conductivity

of polymer matrix composite materials. Nevertheless, metallic deposition on polymer-based materials is

challenging due to the inherent limitations related to high temperature exposure of the substrate. In this

article, a new technique for the manufacturing of composite laminates and the subsequent metallization by

cold spraying of metallic powder is presented. The composite manufacturing route is based on the production

of thermoplastic-thermoset hybrid substrates and consisted of two main stages: in the first stage the partial

impregnation of a reinforcement textile by a thermoplastic film was promoted by hot pressing compaction.

Afterwards, the prepared lamina was vacuum bagged with other reinforcing layers and impregnated by the

thermoset catalyzed resin by a vacuum infusion process. Finally, the thermoset and thermoplastic layers were

co-cured to increase the adhesion of the substrate with the thermoplastic film. The metallization of composite

laminate was obtained through the cold spraying technique, depositing powders on the thermoplastic surface

layer. The effect of processing parameters on the coating deposition, quality and microstructure was reported

and discussed.

KKeeywyworordsds. Metallization, Polymer Matrix Composites, Fiber Reinforced Thermosets, Cocuring, Resin Infusion,

Cold Spray

1 Intr1 Introductionoduction

Lightweight materials are currently widely adopted to optimize structures, transport systems and civil building [1,2].

Due to this reason, many scientific efforts have been devoted to the manufacturing and the optimization of fiber

reinforced composites [3–7]. Aerospace sector has observed inculcation of different approaches to handle the weight

reduction issue. The current research trend in this respect is to replace the metallic materials with lightweight,

corrosion resistant alternatives such as polymer based composites [8–10]. Such incorporation can pose challenges in

case of lightning strike issues due to the low poor electrical conductance of polymer and polymer based PMCs [11].

Hence, it is essential to provide the composites with improved properties. Metallization can provide a way to impart
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the necessary improvement in the electrical as well as thermal conductivity of polymer-based composites [12]. Recent

research efforts have included cold spraying as a metallization method in comparison with the conventional techniques

including physical vapor deposition (PVD) [13,14], chemical vapor deposition (CVD) [15], electroless plating [16],

and thermal spraying [17]. These techniques contain inherent drawbacks of higher processing temperature and

requirement of deposition in a semi-molten or molten state [18]. It can present challenges when the substrate

materials are polymers and polymer-based composites. On the other hand, the cold spray (CS) process offers a

metallic solid state deposition, without any liquid transition of depositing particles [19] and it is applicable for the

low processing temperature polymers and PMCs [20]. Regarding this topic, in the past decade several research efforts

were conducted to attain the understanding on the bonding mechanisms involving different materials. These studies

were mainly constructed by varying the different processing parameters such as nozzle configurations, traverse speed,

gas temperature and pressure, and powder feed rate [18,21]. The literature evidences received from the single particle

impact experimentation by Chen et al. discussed mechanical interlocking to be the preliminary bonding mechanism of

polymeric substrates [11,18]. Also, the lack of chemical reaction and diffusion results in no metallurgical bonding [22].

The process of metallizing the polymer based substrate contains two primary stages i.e. (1) the first layer formation

which involves particle to substrate impingement and, (2) buildup of the coating which also involves particle to particle

impact [23]. During the first stage of metallic deposition, thermal softening of polymer matrix occurs owing to the

metallic particle impact and subsequent kinetic energy dissipation. The successful deposition is dependent on particle

and carrier gas temperature particle velocity, and propelling gas pressures. In the study conducted by Giraud et al. of Al

deposition on PA66 substrate, the carrier gas temperature increase was found to enhance the thermal softening of the

polymer matrix. The thermal softening improved the polymer coverage around the metallic particle and in turn attained

mechanical anchorage [11]. In another investigation by King et al. the spray temperature improvement from 150 ºC to

350 ºC resulted in mean particle embedding depth for the HDPE, PP, Nylon 6, PTFE, PC, and PU substrates [24]. Better

polymer surface coverage was found to be provided by higher particle impact energy for the substrates HDPE and

PTFE [25,26]. The low coating adhesion issue arising in case of low-pressure cold spray configurations can be averted

by incorporating the interlayer materials during the CS [9,10,27]. Such approach provides a bond layer formation

over the substrate on which the metallic coating can be further deposited. Considerable amount of literature suggests

utilization of cold spray technique for the Al [11,28–30], Cu [9,18,24,27], Sn [31,32], Ti [33], Fe [31] deposition on the

thermoplastic polymers. The thermoplastic based PMC composites metallization as well was studied to determine its

effect on the electrical as well as mechanical property changes [34–37]. The similar two stage bonding mechanisms are

also observed in case of metallization of PMCs. As demonstrated by Bortolussi et al. [35], the sprayed powder mixture

and the particle morphology was found to influence the bonding process in case of continuous carbon fiber/PEEK

combination. Other investigated combination includes the Al/Cu deposition on PEEK based CFRP [37], Al deposition

on PEEK reinforced CFRP [38], Cu on CFRP [36], and Al and Cu deposition on PEEK based CFRP [34]. Different research

efforts were conducted to metallize the thermoset based CFRP and determine the influence of processing parameters

on the coating generation [31,39–41]. In the literature survey, commonly observed challenges were matrix surface

erosion and fiber exposure attributed to the brittle nature of the substrate [31,40,42,43]. For instance, Ganeshan et al.

detected erosion and low DE for the thermoset epoxy substrate metallization with Cu [43]. Che et al. observed evident

fracture of the carbon fibers and removal of epoxy resin from some areas in the Al cold spraying attempt on epoxy based

CFRP [42]. Similarly, Al deposition on the thermoset based CFRP resulted in the coating peel off and matrix removal.

For this some strategy of using low density depositing metals such as Sn or inserting a interlayer has been implemented

for achieving deposition on the thermoset based PMCs [40]. In order to overcome the above-mentioned drawbacks,

this investigation presents a new approach involving co-curing after the resin infusion stage and further follow with

metallization via cold spray technique. The primary stage in this strategy was to manufacture a semi impregnated

fiber reinforcement by a thermoplastic film flow by utilizing a hot compaction method. The next manufacturing stage

entails resin infusion of the full stack and co-curing of the semi thermoplastic impregnated fiber panel with thermoset

based resin. This in turn produced a hybrid thermoset based composites with thermoplastic layer which can provide a

potential improvement in the cold spray ability of the panel. The microstructural analysis demonstrates the influence
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of the applied approach in the manufacturing stage as well as the considered processing parameters and its effect on

coating quality.

2 Mat2 Materials and methodserials and methods

The materials used in the experimental work were glass fiber reinforcements, polypropylene (PP) thermoplastic film

and a low viscosity epoxy resin. The main properties of the glass fiber can be found elsewhere [44]. Thermoset epoxy

resin was employed in the resin infusion stage to impregnate through the PP semi impregnated glass fiber reinforced

composite panels. The basic properties associated with the epoxy resin is enlisted in the Table 1. The utilized

thermoplastic polymer PP contained density of 0.95 g/cm³ and thermal conductivity values of 0.22 W/m * K.

TTable 1. Prable 1. Properties of the Soperties of the SX10-eX10-evvo epoo epoxy rxy resin and catalesin and catalyyst used during the infusion prst used during the infusion processocess

The investigation involved two steps corresponding to the composite manufacturing and coating formation.

- Manufacturing of the hybrid laminates

As indicated in the Fig. 1, the hybrid composite manufacturing itself consisted of two main stages to form the thermoset

infused fiber reinforcement stacks with the thermoplastic (PP) interlayer in order to assist in the further cold spraying

procedure. Primarily the glass fiber reinforcement monolayer was hot compacted through hot press set up with the

thermoplastic layer of PP to obtain a thermoplastic (PP) semi-impregnation into the fiber reinforcement (Fig. 1a).

The glass fiber was placed in two configurations of above and below the PP layer during the hot compaction step to

compare and determine the best possible configuration in which the compaction yields better adhesion. During the

manufacturing of the PP/ glass fiber panel, 150 °C test temperature was considered and further increased up to 160

°C since it was in the close range of the PP melting point. Followed by that, 30 minutes of dwell time was provided

to ensure adequate flow of the thermoplastic inside the fiber. Secondary stage was to manufacture a hybrid composite

by the resin infusion process. The laminate containing the first monolayer of PP infiltrated glass fiber reinforcement

was placed along with the additional fiber reinforcement layers to form a composite under the resin infusion process.

Followed by the vacuum bagging, epoxy resin was infused through the prepared lamina (Fig. 1b). The resin infusion

proceeded under the negative vacuum pressure and the homogeneous resin flow was ensured without leakage from

the exterior. The linear resin front can be observed from the Fig.1 b. Occurrences of the air bubbles and cavities are

the most critical challenges associated with the infusion stage. Hence, to avoid this issue, a prior thermoset resin

and hardener mixing was conducted carefully. The co-curing action between thermoset and thermoplastic resins was
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anticipated during this stage to further improve the adhesion. The outcome from the manufacturing stage was the

hybrid composite with the glass fiber reinforcements to be subjected to cold spraying in the subsequent stage.

Fig. 1. (a) arrFig. 1. (a) arrangement of the thermoplastic and rangement of the thermoplastic and reinfeinfororcement lacement layyer during the hot compaction, (b) rer during the hot compaction, (b) resin infusion setesin infusion set

upup

- Metallization of the hybrid composite laminates

The metallization of hybrid composite laminate was obtained through the cold spraying technique, wherein the

objective was to achieve the uniform and improved deposition on the imparted thermoplastic surface layer. The

spraying process was conducted at SOPHIA TECH industrial unit. The effect of processing parameters on the coating

deposition, quality and microstructure was analyzed. The DYCOMET 423 low pressure cold spray system (LPCS) was

utilized for the cold spray phase. The system temperature can be attained in between 100 °C to about 600 °C. For the

cold spray process, two temperature levels were selected: T1 of about 110 °C, and T2 of about 200 °C. Three stand-off

distances were considered in the experiments, i.e. 20 mm, 25 mm, and 30 mm. The experiments were designed in

combinations of the abovementioned temperature and stand-off distance values. The cold spraying pressure was kept

at 5.5 bar during the deposition pass. The powder used for deposition was spherical aluminum-silicon alloy (AlSi10Mg)

with an average diameter of 30 μm. The speed of advancement of the nozzle was set at 10 mm / sec.

3 R3 Results and discussionesults and discussion

3.1 Anal3.1 Analyysis of the manufsis of the manufacturactured hed hyybrid compositbrid composite panelse panels

The obtained glass fiber panels depicting the hybrid composite formation was subjected to the optical microscopic

examinations. The results indicated a sound laminate preparation without significant porosity presence. The obtained

laminates were subsequently analyzed after the metallization experiments. During the hot compaction stage of the

composite manufacturing, the temperature increase ensured initially the softening and further transverse flow of PP in

the fiber inter-tow regions occurred. It can be observed from the image (Fig. 2a). As a result, the prepared laminate was

expected to have higher adhesion between the thermally softened PP layer and the adhered fiber reinforcement layer.
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Fig.Fig. 2. (a) hot compact2. (a) hot compacted laminated laminate (b) micre (b) microgrograph illustraph illustrating the hating the hyybrid compositbrid composite panel afte panel after the infusion prer the infusion processocess

Regarding the resin infusion stage, the optimal microscopic images illustrated the presence of both the softened PP

and the cured epoxy throughout the different regions of the hybrid composite. The micrograph depicting the cross-

sectional view of the composite indicates three distinct regions comprising of first the PP layer adhered to the fiber

reinforcement, second zone comprising of the Epoxy infused into the fiber reinforcement (Fig. 2b). The third zone is

the boundary area distinguishing the first and second zone, which depicts a transition region with the flow of PP and

cured epoxy inside the fiber reinforcement. It indicated the potential intermixing and curing of the resins throughout

the fiber reinforcement layers.

3.2 Anal3.2 Analyysis of the coating obtained bsis of the coating obtained by cold spry cold spraayy

The cold spray processing parameters variation influenced the resultant coating formation. It can primarily be

evidenced from the visual inspection and comparison of the glass fiber panels prepared before (Fig. 3 a) and after the

spraying experiments (Fig. 3 b-m).
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Fig. 3 (a) CompositFig. 3 (a) Composite panel placement fe panel placement for the metallic poor the metallic powwder deposition in the cold sprder deposition in the cold spraaying eying experimentation, Coldxperimentation, Cold

sprspraayyed composited composite panels in the configure panels in the configuration of gation of glass fiber placed abolass fiber placed abovve PP during the hot compaction with (b) T1,e PP during the hot compaction with (b) T1,

20 mm (c) T1, 25 mm (d) T1, 30 mm (h) T2, 20 mm (i) T2, 25 mm (j) T2, 30 mm, Cold spr20 mm (c) T1, 25 mm (d) T1, 30 mm (h) T2, 20 mm (i) T2, 25 mm (j) T2, 30 mm, Cold spraayyed composited composite panels ine panels in

the configurthe configuration of gation of glass fiber placed belolass fiber placed below PP during the hot compaction with (e) T1, 20 mm (f) T1, 25 mm (g) T1,w PP during the hot compaction with (e) T1, 20 mm (f) T1, 25 mm (g) T1,

30 mm (k) T2, 20 mm (l) T2, 25 mm (m) T2, 30 mm30 mm (k) T2, 20 mm (l) T2, 25 mm (m) T2, 30 mm

During the CS process, the general trend is the initial impingement of metallic particles at certain velocity level achieving

the resultant particle-substrate and particle-particle interaction. The particle-substrate interaction, deformation, and

deposition after the impingement is feasible in case of considering optimum processing conditions. The particle velocity

should attain the critical velocity level at which the particle impact can generate the particle-substrate interaction. The

particle penetration into the substrate surface is highly desirable under the circumstances of anticipating the particle

anchorage with the host matrix. The mechanical interlocking mechanism does not occur in cases of employing the

brittle nature substrate which can promote the severe substrate surface damage forming craters and opposing the

particle penetration. In some cases of metallizing the thermoset based resin with fiber reinforcement, the damage

in matrix removal as well as reinforcement damage is observed as well. The previously mentioned parameters

combinations play integral role in deciding the ultimate coating achievement. The required amount of gas temperature

raise can propel the effective deposition followed by the spraying pass movement. Also, the distance between the

nozzle and the substrate surface i.e. stand-off distance can influence the particle impingement velocity and hence is

one of the processing conditions governing the deposition. In this investigation, on the similar concept, different values

of temperatures and standoff distances were selected by considering the materials properties of the substrate and

depositing powders. The main focused processing parameters were the temperature and standoff distance. the hybrid

composite prepared in two different configurations of glass fiber placement above and below the PP layer during the

compaction were sprayed using the same process parameters.

As shown in Fig. 3 (b-g), condition of T1 temperature yielded almost no deposition in both the above and below

configurations. Almost none or scarce deposition of AlSi10Mg was obtained in the initial experiments involving lower

temperature values of 100 °C in correlation to each of the SoD values after one pass completion. Micrograph depicting

the almost no deposition for the specific case of T1 temperature and highest 30 mm SoD can be visualized in Fig 4

a. The further changes in the design of experiments involved enhancing the temperature values up to T2 temperature

200 °C, and different attempts involved predefined stand-off distance values (Fig. 3 h-m). After single pass, for both
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the configurations of glass fiber placed above and below PP, the metallic layer was formed over the hybrid composite

surface. In comparison, only changes in the fiber placement configuration does not appear to have significant influence.

The cold spraying parameters variation yielded significant changes with regards to the coating formation. The uniform

and continuous deposition throughout the length indicating the optimum set of parameters as the T2 temperature in

combination with varying stand-off distances were obtained (Fig. 4 a, b). Such findings are attributed to the foremost

effect of spraying processing parameter temperature and the hybrid composite being able to achieve the desirable

matrix particle interaction upon the impingement.

Fig. 4 Coating obtained with the diffFig. 4 Coating obtained with the differerent prent processing conditions (a) T1 tocessing conditions (a) T1 temperemperaturature 100 ° C, 30 mm stand of distance,e 100 ° C, 30 mm stand of distance,

(b) T2 t(b) T2 temperemperaturature 200 ° C, 30 mm stand of distance, (c) magnified view of the deposite 200 ° C, 30 mm stand of distance, (c) magnified view of the deposited coatinged coating

In detail, subsequent optical microscopic observation revealed a clear deformation and penetration into the substrate

surface indicating towards a mechanical interlocking type of bonding mechanisms. This intriguing feature can be

the potential reason behind the better mechanical anchorage of particle into the matrix. The enhancement in the

temperature encourages this occurrence. Potentially the gas temperature raises the surface temperature of the

particles transitioning towards the substrate surface. The higher kinetic velocity impact over the surface and upon

impingement the heat dissipation from the heated metallic particles to the substrate surface results in the polymeric

substrate surface softening. The softened polymeric matrix further provides a potential site to have a higher depth

of penetration and envelops the deposition metallic particle generating a better anchorage between them. The prior

literature studies support such elaboration; however, further investigations and characterizations will be conducted to

confirm the claims. Moreover, another feature visible from the high magnification image in the Fig. 4 (c) demonstrates

the particle-particle interaction upon the deformation. It is opportune in case of obtaining a continuous coating with

higher adhesion.

4. Conclusions4. Conclusions

Following conclusions can be drawn after the investigation comprising of the manufacturing and metallizing the fiber

reinforced resin infused panels:

(1) a new approach, based on the manufacturing of a hybrid thermoplastic-thermoset laminate has been proposed,

whereas enhanced adhesion is achieved by the combined impregnation of the reinforcement and co-curing of

polymeric resins.

(2) preliminary tests highlighted that the processing window for the combined impregnation and co-curing is based

on a proper calibration of temperature and pressure, whereas the gas temperature appeared as the most relevant

parameters for the subsequent deposition of metallic powders.
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