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AAbstrbstractact.. In the last decade, machine learning is increasingly attracting researchers in several scientific areas

and, in particular, in the additive manufacturing field. Meanwhile, this technique remains as a black box

technique for many researchers. Indeed, it allows obtaining novel insights to overcome the limitation of classical

methods, such as the finite element method, and to take into account multi-physical complex phenomena

occurring during the manufacturing process. This work presents a comprehensive study for implementing a

machine learning technique (artificial neural network) to predict the thermal field evolution during the direct

energy deposition of 316L stainless steel and tungsten carbides. The framework consists of a finite element

thermal model and a neural network. The influence of the number of hidden layers and the number of nodes

in each layer was also investigated. The results showed that an architecture based on 3 or 4 hidden layers

and the rectified linear unit as the activation function lead to obtaining a high fidelity prediction with an

accuracy exceeding 99%. The impact of the chosen architecture on the model accuracy and CPU usage was

also highlighted. The proposed framework can be used to predict the thermal field when simulating multi-layer

deposition.

KKeeywyworordsds. Machine Learning, Artificial Neural Network, Direct Energy Deposition, Thermal Model

1 Intr1 Introductionoduction

Additive Manufacturing (AM) processes are today widely spread and prove their ability to form complex shapes and

are applied on a wide variety of alloys [1,2]. Meanwhile, industrial applications face various kinds of defects during and

after fabrication: porosity, formation of cracks, keyhole defects [3], difficulties to produce net shapes etc. This is due to

the complex phenomena occurring during the manufacturing process.

Experimentations and trials constitute a way to adjust process parameters (laser power, scanning speed, spot size,

building direction, hatch spacing, feed rate, distance nozzle-substrate etc.) but are time and cost consuming. Therefore,

numerical techniques, in particular the Finite Element Method (FEM), have been used as promising tools to predict

various outputs such as microstructure, mechanical properties, melt pool shape, and dimensions.

Within literature, several approaches to model AM processes have been developed [4-8]. These numerical models help

to better optimize process parameters and offer the possibility for industrials to reasonably predict distortions, shapes,

residual stresses, thermal histories etc. However, numerical modeling applied on AM still faces various challenges.

Indeed, multi-physical simulations are time and CPU consuming and require simplifying assumptions, which result

in accuracy issues consisting in discrepancy between computed and experimental results. To improve the accuracy,
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additional high cost must be paid; taking in account real thermo-physical properties of the cladded materials, multi-

technique validations : thermocouple records, high speed cameras, microstructural analysis, nano-indentations…Thus,

simulation should be validated by at least two techniques [8,9]. Boundary conditions are still a serious challenge in

AM modeling due to the difficulty of experimental measurements. These FEM drawbacks trigger scientists to look for

alternative approaches.

Machine Learning (ML) is a promising technique which has been enhanced by the increasing computing capacity, mostly

in the last decade [10]. It trends to prove its ability to be complementary and even substitute for traditional techniques

in computational material science. It has been considered as a technology development accelerator in various fields

like chemistry, molecule design [11], finance [12], Web … but is still a new approach in materials science and especially

in the field of metals. The limitation of ML in this research area is due to the lack of large dataset of materials,

while other domains take advantage of large available datasets: Kaggle, AWS, Socrata, etc. Most recently, Integrated

Computational Materials Engineering (ICME) approach has been developed to enhance emergence of new materials

and better selection, especially in advanced applications. The aim is to develop a strong network relating actors in

material science field. ML framework provides a good opportunity to couple ICME tools and experimentations [10].

Researchers in AM field are giving increasing attention to harness the benefits of Artificial Intelligence (AI) in order

to optimize materials design and control process parameters. It should be noted that ML is the set of soft techniques

applied to realize AI. AI approaches can be classified into two main groups: supervised and unsupervised learning.

Supervised learning is used in case of known responses and englobes regression algorithms on the one hand and

classification ones on the other hand, while unsupervised learning is used in case of unknown response (prediction,

recognition, etc.). Regression techniques in AM field have the aim to predict continuous responses (thermal histories

[13], melt pool depth [14], deformations [15], etc.). For that, linear or nonlinear regressions, Gaussian Process (GP),

Support Vector Machine (SVM), Logistic and Artificial Neural Networks (ANN) are good candidates. Classification

techniques are attracting attention of material’s researchers to predict various defects occurring during manufacturing

such as abnormal grain growth. For that, K-nearest neighbors, Logistic regression and SVM are strongly recommended

according to [16].

The selection of the appropriate algorithm strongly depends on a variety of criteria such as the size of the training data,

memory usage, target accuracy, interpretability of results and number of features. Statistical methods and pure-data-

driven models are developed in AM field to quantify the influence of process parameters on mechanical properties,

surface characteristics, build shape, etc.

Within literature, some interesting ML models applied on AM of metals can be highlighted. Tapia et al. [14] developed

a framework based on a GP surrogate model to predict melt pool depth in single track Laser Powder-Bed Fusion

(L-PBF) deposition of 316L Stainless Steel (SS). The model was used to identify appropriate process parameters to get

the desirable heat conduction and reduce keyhole mode effects. Waqas et al. [17] proposed a model of the deposition

of AlSi10Mg alloy by Selective Laser Melting (SLM) in order to predict plastic anisotropy, local strain distribution and

failure in tensile tests.

As the application of ML in AM field is still not widely applied in particular in metal alloys and is often considered

as a black box for several researchers of this field, this work proposes an exploratory and comprehensive study that

highlights the methodology of implementation of an AI framework composed of a physically based model (FEM) and an

ANN algorithm. An initial architecture was chosen through trial and error as a first step. Then, different configurations

were studied with varying numbers of hidden layers, numbers of nodes per hidden layers and activation functions.
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2 FEM model and ML fr2 FEM model and ML framewamewororkk

2.1 FEM model

A FEM model for 2D thermal simulation of the Directed Energy Deposition (DED) of the composite coating (316L

SS and tungsten carbides) was developed to predict the thermal history during the building stage and to get insights

about possible microstructures of the solidified material [18]. The 2D model is shown in Fig. 1. The clad consisted in

19 superimposed layers. The validation of the model was based on two validation criteria: measured melt pool depths

and a substrate thermocouple records. In addition to the parameters gathered in Fig. 1b, thermo-physical properties

and boundaries conditions (radiation and convection) were considered [18].

Fig. 1. (a) The 2D mesh designed fFig. 1. (a) The 2D mesh designed for the thermal field of DED deposition of 316L SS+ Tor the thermal field of DED deposition of 316L SS+ Tungstungsten caren carbides and (b) thebides and (b) the

set of prset of process and simulation input data [18].ocess and simulation input data [18].

2.22.2 ANN modelANN model

From ML regression techniques, which predict continuous responses such as temperature field history, ANN was here

chosen. This choice is recommended for highly non-linear problems and consists in fully connected perceptrons to

mimic the human brain. The thermal history predicted by the FEM model was used as the input data of ANN. Input

dataset, organized as a matrix X, is indeed composed of following input features: 𝑋=(𝑥 𝑦 𝑡 𝑥𝐿 𝑦𝐿 𝑑𝑥 𝑑𝑦 )𝑇 ; x, y are the

coordinates, t is the FE time step, xL and yL define the laser position at each Finite Element (FE) time step, dx and dy

are the distance between laser head and each point P(x,y) at each time step. It was reported that the distance between

laser head and substrate points has direct impact on their thermal history and melt pool shape [19]. Overall, the input

matrix XX has 7 as columns number (7 input features) and the output layer contains nodal temperature for each point

at each FE time step.

It should be noted that the case where the matrix only consists in x, y and t as input was also investigated in order

to highlight the impact of adding more features on the model accuracy. In a related work, input laser power (input

energy) was varied in the FEM model to get a bigger dataset and was considered in the input matrix. Moreover, the

layer number was taken into account [20].

The actual work took into account only one FEM simulation due to its exploratory purpose. The ANN architecture was

first chosen using trials and error which led to 4 hidden layers; each one contains 100 nodes, as shown in Fig. 2 and

Table 1. The neural network computing was executed in two main steps. The first step is the feedforward. The impact

of the input features on output results (nodal temperatures) is to be initiated through random weights affected to

the connections between nodes. The computed value at each node is a weighted sum to which the activation function

is applied:
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here a is the output value of a given perceptron, f is the activation function (often non-linear), wi the weight of an input

connexion i whose value is xi and b the bias. The activation functions are various such as the Rectified Linear Unit

(Relu), Logistic (sigmoid), the hyperbolic tangent (tanh), and the softmax (also called softargmax) [17,11].

Fig.1 ArFig.1 Architchitecturecture of the pere of the perceptrceptron (a) and the ANN model (b).on (a) and the ANN model (b).

TTable 1. Description of the implementable 1. Description of the implemented model.ed model.

It should be noted that this architecture corresponds to deep learning, as the number of hidden layers exceeds one.

The data preprocessing was ensured by feature transformation integrated into the single matrix (X) then normalized.

Indeed, normalization is a key step in data preparation to allow the ML algorithm a better modeling of the data. In

particular, the data was normalized to the range of 0 and 1. A Python script code was used to implement the framework

using the free scientific libraries: Numpy (high dimensional arrays and matrix), Scipy (scientific computing), Matplotlib

(graphics), Pandas (data analysis), Tensorflow (differential programming and data flow), Keras (interface for ANN),

Sklearn (data regression) and Shap (feature importance). Using the Keras sequential model, the input data were

divided into a training data set and a validation one through the choice of 0.6 as ratio (ts). The ANN model was trained

using only 60% of input data, while the remaining 40% were used to validate the model. Data normalization was

processes using the sklearn object “MinMaxScaler”.
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3 R3 Results and discussionesults and discussion

After the training and validation phases, predicted ANN solutions were compared to those obtained by FEM simulations.

Thermal histories for selected important material points (gathered in Fig. 3a) were carried out. These points were

selected from different heights of the clad, at the beginning of the deposition and from the substrate. For comparison

purposes, various metrics evaluate the ML model performances called loss fucntions. The mean squared error (MSE) is

given by the formula:

The mean absolute error (MAE) is expressed by:

These errors were used to evaluate the accuracy of regression problems. Here yi, ŷ𝑖 and n are respectively the reference

value (FEM result), the predicted one (ANN) and the number of samples or rows in the validation dataset (ts*nb_node

* nb_time_steps). MSE has the advantage of providing a quadratic loss function and letting data scientist punish big

errors, but that may enhance difficulty of interpretability by varying from 0 to infinity. MAE simply gives the absolute

difference between actual (from FEM model) and predicted values (by ANN), but is an absolute value like MSE.

The Mean Absolute Percentage Error (MAPE) is suitable for regression problems and has the advantage to be more

interpretable as it is a relative error. It is given by the formula:

Likewise, the R2 score is interpretable as it varies between 0 and 1. It links the variance from the model to the total

variance through the relationship:

where 𝑦̅𝑖 is the mean of actual values. The more data are correlated, the more the tendency of R2 is to be close to 1.

It was here chosen to begin by highlighting results of the ANN model when only x, y and t are considered. As inferred

from Fig.3 b, there is a discrepancy between FEM results and ANN prediction. This is mainly expressed by a MAPE

higher than 7%. This finding is also reported for other material points. Moreover, the oscillation profile is not captured

by the ANN model. The model accuracy calculation is based mainly on these different loss functions (𝑅2, 𝑀𝑆𝐸, 𝑀𝐴𝐸

𝑎𝑛𝑑 𝑀𝐴𝑃𝐸), as well as the model error hereafter defined.
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Fig.3 a: SelectFig.3 a: Selected mated material points (ferial points (for comparison purposes). b: Comparison betwor comparison purposes). b: Comparison between actual (FEM) Preen actual (FEM) Predictedicted (ANN) fed (ANN) foror

P2 (middle of the clad)P2 (middle of the clad)

When considering all features (7 inputs), there is a good agreement between FEM and ANN predicted curves, as shown

in Fig. 4. The model loss is a number indicating how well the model is doing. It was computed for each example in

training and validation sets. The lower is the loss, the better is the model. Fig. 4a shows the good trend of the loss

functions. At the beginning of the deposition, temperature peaks are not well captured by ML (P0). By increasing

time, MSE, MAE, MAPE tend to decrease, while the 𝑅2 score tends to increase. MAPE, which gives interpretable values,

decreases from 2.93% for the thermal history of P0 to reach 1.29% for those of P3. The model loss presents a good

tendency and final value.

Fig.4 Model loss (a) and comparison betwFig.4 Model loss (a) and comparison between preen predictedicted thermal histed thermal history of selectory of selected points using FEM and ANNed points using FEM and ANN

apprapproaches [(b) toaches [(b) to (e) ] wo (e) ] when taking in account all fhen taking in account all featureatures.es.

The test accuracy is higher than 99%, which suggests a high fidelity model. Output data were postprocessed for a

better visualization. As shown in Fig.5, the ANN model predicted a thermal field distribution similar to that predicted

from the FEM model. The big data set (training and validation) explains the high fidelity prediction. Indeed, it consists

of 4079768 samples (1628 nodes * 2506 time steps). Moreover, the most influential parameters, such as laser power,

idle time, distance from substrate to nozzle as well as the geometry were not varied. That allows ANN a good modeling
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of data without too much training time.

Fig.5. Thermal fields computFig.5. Thermal fields computed bed by FEM (a) and pry FEM (a) and predictedicted bed by ANN (b). The melt pool corry ANN (b). The melt pool corresponds tesponds to the black aro the black areaea

wwherhere te temperemperaturature is aboe is abovve 1720 K (liquidus).e 1720 K (liquidus).

This study was exploratory. It is hereafter proposed to highlight the impact of the architecture of the sequential

ANN model on the prediction accuracy. It is reminded that this architecture is based on the number of hidden layers,

the number of nodes for each one and the activation function. Tanh, sigmoid and softmax activation functions were

implemented in the model as replacements of Relu. For each case, a mean percentage error is defined as the mean

of all MAPE values and is proposed as the model error. Indeed, each MAPE corresponds to a node number and time

steps. This mean percentage error allows interpreting accuracies and is proposed hereafter as the model error. Results,

given in Fig.6a, confirm the initial choice of Relu which was based on the fact that Relu functions are commonly

used in regression problems with neural networks [21]. The huge error given by the softmax function was excepted

because it is often applied in only the last hidden layer as a classifier, used e.g., in image analysis problems with deep

neural networks [18]. Tanh also gives acceptable results for this highly non-linear problem because the data has been

normalized to the range of 0 and 1.

Fig.6. Impact of the chosen actiFig.6. Impact of the chosen activvation function (a) and of the number of hidden laation function (a) and of the number of hidden layyers (HL) (b) on the accurers (HL) (b) on the accuracy of theacy of the

model (emodel (exprxpressed bessed by the mean pery the mean percentage errcentage error).or).

For sigmoid, deeper analysis should be applied to interpret the obtained huge error. Indeed, Waqas et al. [17] (see

Introduction) had obtained similar losses evolution by applying sigmoid and tanh, when they investigated the effect

of the choice of the activation function. In their case, a neural network with 8 hidden layers was selected while 2, 3

and 4 hidden layers (using Relu) were here investigated as shown in Fig. 6b. The performed trials demonstrate that

increasing the number of hidden layers leads to progressively reduce the mean percentage error to reach an acceptable

value of 2.28%. For comparison purposes, the architecture (8 HL + ”sigmoid” + 100 nodes/HL) was also tried. It

results in a decrease of the model error from 58% to 12.7%, which is a significant decrease but not sufficient.
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Another interesting analysis consists in testing the effect of the number of the HL nodes on the mean percentage error

and the training time. For simplifying purposes, all hidden layers of the model are affected by the same number of nodes

(100). As inferred from Fig.7, increasing the number of nodes in the hidden layers leads to progressively decrease the

model error to reach a steady value near 2%. It is observed that increasing the number of nodes to greater than 300

does not significantly improve the model error while it can consume significantly more CPU training time. Based on

these trials, it could be deduced that an architecture of 3 or 4 hidden layers associated with about 100-200 nodes leads

to obtain a good accuracy (more than 99% in this study) and in a reasonable computing time. It should be emphasized

that these parameters appeared to be goal for this specific data set and problem.

Fig.7. Impact of the number of nodes (n) on the mean perFig.7. Impact of the number of nodes (n) on the mean percentage errcentage error (a) and the tror (a) and the training time (b) faining time (b) for the chosenor the chosen

ararchitchitecturecture.e.

Future applications of ML/ANN should be highlighted. For a multi-layer model whose simulation requires too much

time to be executed, training an ANN model with few AM layers data would make it able to predict solution for upper

layers. Moreover, training the model by varying input parameters (geometry, power, scanning speed etc.) and giving

the model the output at each time (thermal field, microstructure, mechanical properties…) gives the possibility to get

solutions for other input values without running the computationally cost FEM simulations. The current exercise may

be extended to study feature importance, which is an important step in ML modelling and data analysis. Indeed, that

allows getting key information about the physically-based or numerical model such as degree of importance of inputs

parameters and dependencies between them.

4 Conclusions4 Conclusions

In this work, a ML framework was proposed consisting in a physically-based FEM model and a deep learning algorithm.

The choice of such an architecture was carefully justified. That gave high fidelity prediction for FEM results through

more than 99% of accuracy and a model error (mean of all MAPE errors) of about 2% for an ANN model containing 4

HL and 100 nodes/HL. The effect of varying the number of HL and the number of nodes was investigated. The obtained

high fidelity is not only explained by the choice of the architecture but also the quantity of input data. Indeed, the

deposition of 19 superimposed layers was modeled by FEM, which provided a dataset containing more than 4 million

samples.

ANN regression algorithms are well adapted to AM problems because output data are generally continuous such as

temperature and strain evolutions. Even if ANN algorithms can substitute FEM through a framework composed of

physical analysis and ML model, FEM has the particularity to give big data set alloying ANN to better model input

parameters. Thus, combining FEM and ANN in one framework is a suitable choice to get good accuracy. When in-situ

control is possible in AM field, real-time computing and adjustment of processing parameters can be possible using ML.

Thus, it would be interesting to focus on recurrent neural network algorithms to get better insights of the application
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of AI on ML.
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