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AAbstrbstractact.. In this study, a sequential thermoforming and squeeze flow simulation approach for Glass Mat

Thermoplastic (GMT) material is proposed and applied to a hat section geometry using input properties

based upon Tepex flowcore, a long glass fiber reinforced polyamide (PA/GF) mat manufactured by Lanxess.

First, a fully-coupled thermomechanical simulation is conducted based on a purely Lagrangian description,

to efficiently capture thermoforming. Subsequently, relevant state variables are mapped and initialized for a

Coupled-Eulerian-Lagrangian (CEL) approach. The CEL approach is adopted to accurately capture squeeze flow,

which is not possible by a purely Lagrangian description. While numerical techniques differ, both approaches

use the same three-dimensional and thermomechanical constitutive equations including an equation of state,

a nonlinear viscosity model, and crystallization kinetics, implemented through a material user-subroutine

(VUMAT) for the commercially available simulation software package ABAQUS/Explicit.

KKeeywyworordsds. Process Simulation, Glass Mat Thermoplastics, Thermoforming, Squeeze Flow, Thermomechanical

1 Intr1 Introductionoduction

Lightweighting is an important enabler in the modern automotive industry for reducing greenhouse gas emissions and

achieving future regulations [1]. For this purpose, continuously fiber-reinforced composites offer great potential due to

their excellent mechanical properties and low density. However, their capability to be shaped into complex geometries

is limited. In contrast, chopped fiber materials reveal the potential to be used for more complex geometries, including

local thickness changes, ribs, and beads, offering significant potential for functional lightweighting [2,3].

With an eye towards the developments within Industry 4.0, a continuous and functional virtual process chain is a

powerful tool. Thereby, a digital twin of the manufacturing process using process simulation is suitable for optimization

of the manufacturing process. In the context of a continuous virtual process chain, a digital twin enables the robust

development and virtual testing of new components or the adjustment of components due to changes in boundary

conditions or requirements [2].

The material investigated within this study is Tepex flowcore, a long glass fiber reinforced polyamide (PA/GF) glass

mat manufactured by Lanxess, Bond Laminates. This material is characterized by high fiber volume content (47 vol.%),

random fiber orientation, and consistent fiber length distribution. Tepex flowcore consists of long (30-50mm) glass

fibers with an engineering polymer, i.e. PA6, and belongs to the material class of Glass Mat Thermoplastic (GMT).

Foremost, the material is processed using thin blanks and high initial mold coverages, resulting in comparably short
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flow paths to obtain the final part thickness. Nonetheless, a squeeze flow of the material cannot be excluded in

general. Based on this, the processing of Tepex flowcore can in general be subdivided into two sequential stages:

Thermoforming and squeeze flow (cf. Figure 1). Thermoforming can include typical defects such as local wrinkling. In

contrast, squeeze flow is described by a distinct material flow.

Fig. 1. Schematic illustrFig. 1. Schematic illustration of the stages during the pration of the stages during the processing of Tocessing of Tepeepex flox flowwcorcore fe for higor high initial mold coh initial mold covvereragesages

Regarding process simulation, thermoforming simulation explicitly aims to predict the forming behavior in terms of

in- and out-of-plane deformations, such as shearing, elongation, or bending, as well as local defects such as wrinkling.

Recent studies focus on continuously fiber-reinforced thermoplastic tape laminates [4-7], using purely Lagrangian

approaches. In this context, most of the existing approaches utilize conventional shell elements, due to the high

slenderness ratio of the related pre-products. Only a few studies consider three-dimensional approaches thus far since

these materials often reveal a specific material behavior under bending loading, which cannot be captured directly

by first-order three-dimensional material modeling approaches [8]. Our previous study [9] demonstrated that existing

thermoforming simulation approaches are applicable to predict the thermoforming behavior of Tepex flowcore.

Additionally, it is shown that the decoupling of membrane and bending behavior is not strictly necessary. Therefore,

first-order three-dimensional modeling approaches become applicable to this material class.

For the prediction of squeeze flow in compression molding simulation, approaches that apply two-phase methods

based on Darcy's law [10] or separate fiber and matrix speeds with a model transition for different flow regimes [11]

have been developed. Direct fiber bundle simulations [12] are another two-phase method that enables detailed studies

on fiber orientation, e.g. at rib geometries [13]. However, the majority of compression molding simulation approaches

consider the material as a single-phase using Eulerian or Arbitrary Lagrangian Eulerian (ALE) modeling approaches.

In recent publications [2,14,15], Sheet Molding Compound (SMC), also a chopped fiber material with a thermoset

matrix, is modeled as a three dimensional, single-phase, weakly compressible, anisotropic, non-Newtonian material

that experiences slip at the mold surface using a Coupled-Eulerian-Lagrangian (CEL) approach. A similar approach is

conceivable for squeeze flow simulation of GMT materials since these approaches are capable to predict the material

flow of highly filled fiber suspensions.

Currently available process simulation approaches for GMT materials, however, typically include either a thermoforming

simulation or a squeeze flow simulation, not both. One recent study [16] applied a sequential approach with two

separate and sequential simulations in which thermoforming was modelled in LsDyna using a Lagrangian approach and

the results were then transferred into a squeeze flow simulation in Moldex3D. However, the two simulations required

separate material characterizations and material models, with a limited carryover of information from one simulation

to the next (namely temperature and shape). To accurately simulate molding of GMT materials, both sequential

simulation of thermoforming and squeeze flow, as well as an accurate, unified, and continuous representation of the
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material behavior and its state are required.

In this study, these two challenges are addressed and a unified approach to model the molding process in a continuous

fashion is presented. First, thermoforming is modeled through a first-order three-dimensional thermoforming

simulation using a Lagrangian approach. Subsequently, relevant material state variables are transferred as initial

conditions to a squeeze flow simulation, which uses a CEL approach. The state variables are mapped from the

Lagrangian to the Eulerian mesh using in-house import/export scripts for ABAQUS/CAE and the MpCCI Mapper,

which is developed by Fraunhofer SCAI and supplied by scapos AG. Both process simulation stages use a fully-

coupled thermomechanical analysis and the same constitutive equations to predict the mechanical behavior, namely

the thermoforming and squeeze flow behavior, as a function of temperature and crystallization kinetics. For this

purpose, existing approaches for the commercially available simulation software package ABAQUS/Explicit based on

user-subroutines for thermoforming simulation [4,5,9] and SMC compression molding simulation [2,14,15] have been

combined and further developed.

2 Modeling appr2 Modeling approachesoaches

The proposed sequential process simulation approach for GMT materials and in particular for Tepex flowcore consists

of two simulation steps using the commercially available simulation software package ABAQUS/Explicit in combination

with a material user-subroutine (VUMAT). These simulation steps predict thermoforming and squeeze flow (cf. Figure

2). While the numerical techniques are different, both steps use the same constitutive equations, respective user-

subroutine, as well as the same tool kinematics modeling approach. Therefore, the adopted constitutive equations

(cf. Section 2.1) and tool kinematics modeling approach (cf. Section 2.2) are outlined initially. Subsequently, the

specificities of the thermoforming simulation (cf. Section 2.2), the mapping procedure (cf. Section 2.3), and the squeeze

flow simulation (cf. Section 2.4) are outlined.

Fig. 2. Schematic illustrFig. 2. Schematic illustration of the sequential station of the sequential steps feps for pror process simulation of GMT matocess simulation of GMT materialserials

2.1 Constituti2.1 Constitutivve equationse equations

Thermal modeling.Thermal modeling. The governing equation for thermal modeling is the heat balance equation in combination with the

generalized Fourier’s equation, which is given in the weak form by:
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where 𝑇 is the temperature, 𝜌 the material density, 𝑐𝑝 the heat capacity, 𝛌 the heat conductivity tensor, 𝑠 a surface flux

on the boundary, and 𝑟 a heat flux source term. The surface flux 𝑠 splits into two terms to account for convection and

radiation (𝑠 = 𝑠conv + 𝑠rad) and the source term 𝑟 is applied to account for the latent heat due to crystallization (𝑟 =

𝜌Δℎcryst𝑋̇), where Δℎcryst is the specific crystallization enthalpy. The relative crystallinity 𝑋 is predicted by Nakamura’s

equation, which is given in the differential form by [17]:

Based on the Avrami index 𝑛 and the crystallization rate constant 𝐾, for which Ziabicki’s empirical approach [18] is

adopted:

Through the determination of the material parameters 𝐾max, 𝑇max, and 𝐷 for each cooling rate considered in Differential

Scanning Calorimetry (DSC), crystallization kinetics becomes predictable over a wide range of cooling rates. Based on

this, the transition from the molten (𝑋=0) to the solid material state (𝑋=1) is predicted and considered in process

simulation.

Thermomechanical coupling.Thermomechanical coupling. The total stress upon deformation is expressed in terms of the Cauchy stress 𝝈 separately

for the molten and the solid material state as a function of the temperature 𝑇 and the relative crystallinity 𝑋 through:

Thus, both the temperature-dependency of mechanical behavior in the molten material state and the transition from

the molten to the solid material state are considered in mechanical modeling. Thereby, the superpositioning of both

stress states via the relative crystallinity 𝑋 guarantees a smooth transition from the molten to the solid material state.

MoltMolten maten material staterial state.e. In the molten material state, the Cauchy stress is determined through:

where 𝑝 is the hydrostatic pressure derived from an equation of state (EOS) and 𝛔visc denotes the viscous stress. The

EOS models the compressibility through the two-domain Tait-model [19] reformulated for the molten regime by:

where 𝑏3molten, 𝑏4molten, and 𝑏5 are material parameters. The viscous stress is computed through:
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where 𝑫′ is the deviatoric rate of deformation tensor, which can be determined from the velocity gradient 𝑳

(𝑫′=dev(sym(𝑳))). The viscosity 𝜂 is defined as a function of temperature 𝑇 and equivalent shear-rate (𝛾̇=√2𝑫:𝑫)

following a Cross-WLF approach [20]:

Solid matSolid material staterial state.e. The solid material state is modeled through a St. Venant-Kirchhoff hyperelastic approach [21]:

where 𝐽 is the Jacobian, 𝑭 is the deformation gradient, 𝑺 the second Piola-Kirchhoff stress, ℂ an orthotropic stiffness

tensor, EE the Green-Lagrange strain, and 𝐅molten the deformation gradient at the onset of crystallization, being the

reference configuration for the constitutive equations in the solid material state. This configuration is obtained through

a multiplicative decomposition of the deformation gradient (𝑭=𝑭solid⋅𝑭molten), yielding an additive split of the Green-

Lagrange strain (EE = EEsolid+ EEmolten).

Fiber orientation.Fiber orientation. The evolution of fiber orientation due to material deformation and material flow is modeled through

the second-order fiber orientation tensor following Jeffery’s equation [22]. Based on this, the need to characterize

numerous fitting parameters, as needed for other fiber orientation models, such as the ARD-RSC model [23], is

circumvented. Using the vorticity tensor (𝝎=skw(𝑳)) and 𝜆=1 for long slender fibers, the tensorial form of Jefferey’s

equations:

as proposed by Advani and Tucker [24], is adopted. Here, 𝔸 is the fourth-order fiber orientation tensor that is computed

using the invariant based optimal fitting (IBOF) closure [25].

2.2 T2.2 Tool discrool discretization and kinematicsetization and kinematics

The tools are modeled by discrete rigid elements in both thermoforming and squeeze flow simulation, which is

enabled through the purely Lagrangian and the Coupled-Eulerian-Lagrangian (CEL) approaches, respectively. The tool

kinematics is modeled in real-time, to accurately account for temperature and rate-dependent effects. A scaling of

time for numerical efficiency is conceivable but is not straightforward due to the nonlinear nature of the constitutive

equations described in the previous section. Therefore, mass scaling for improving numerical efficiency is preferred.

Regarding boundary conditions, a purely displacement-controlled press profile and a constant and homogeneous

temperature is assigned to the tools in the scope of this study.
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2.3 Thermof2.3 Thermoforming simulationorming simulation

Thermoforming simulation is conducted with a purely Lagrangian and fully coupled thermomechanical approach with

explicit time integration due to large contact areas. Solid elements are used for the discretization of the blank, to take

into account the three-dimensional deformation behavior. Hexagonal elements with incompatible modes (C3D8I) are

adopted, to prevent numerical locking effects of the elements with a high slenderness ratio under bending loading.

Since no thermomechanical hexagonal elements with incompatible modes are available in ABAQUS, thermal behavior

is modeled through superpositioned thermomechanical hexagonal elements with reduced integration (C3D8RT). The

material user-subroutine (VUMAT) including the constitutive equations described in Section 2.1 is assigned to the

C3D8I elements. In contrast, quasi-zero stiffness, as well as heat capacity and heat conductivity, are assigned to the

C3D8RT elements.

2.4 Mapping2.4 Mapping

The transition from thermoforming to squeeze flow simulation requires the transfer of relevant state variables

between two different simulation approaches and meshes (cf. Figure 2). Besides the material volume fraction S at the

position xx, describing the initial charge for squeeze flow simulation, the temperature 𝑇, the relative crystallinity 𝑋, the

second-order fiber orientation tensor AA, as well as the strain in the molten material state EEmolten are transferred as

state variables and considered as initial local conditions. This transfer requires a mapping of the aforementioned state

variables from the Lagrangian mesh of thermoforming simulation on the Eulerian mesh from the CEL approach for

squeeze flow simulation. The mapping is enabled through in-house import/export scripts for ABAQUS/CAE using the

neutral ASCII-format vtk. Based on this, the source and target data stored in vtk files are adopted and the mapping

itself is conducted with the MpCCI Mapper, which is developed by Fraunhofer SCAI and supplied by scapos AG. Using

these tools, the elemental state variables are mapped using a weighted element technique.

2.5 Squeeze flo2.5 Squeeze flow simulationw simulation

Squeeze flow is modeled utilizing the ABAQUS/Explicit Coupled-Eulerian-Lagrangian (CEL) approach, which is based

on the work of Benson [26,27]. The fundamental idea of this approach is to apply an operator split with a Lagrangian

step and a subsequent Eulerian transport step. The Eulerian step is computed by moving the deformed nodes back

to their fixed positions and calculating the volume of material transported between neighboring elements [27]. State

variables are advected assuming a linear interpolation in each element of the deformed configuration and mapping

them to the adjusted configuration based on the volume material fractions. Based on this, the cavity is discretized using

Eulerian elements (EC3D8RT) and the mapped state variables describe the initial charge through the volume fraction

S(xx) and its state through additional state variables (cf. Figure 2).

3 Application e3 Application exxampleample

3.1 Model setup3.1 Model setup

The hat section geometry presented in Figure 3 is adopted as an application example. For this purpose, a 4 mm blank

with the dimensions 950 x 335 mm² is used. A tool temperature of 150 °C and an initial blank temperature of 287.3

°C, which is the expected temperature after heating the blank to 300 °C and transferring it to the mold, is assigned.

In the thermoforming simulation, a gravity step is followed by a displacement-controlled press profile with a decrease

of press velocity towards mold closure. In contrast, a constant press velocity is used for squeeze flow simulation. The

whole cycle amounts to 8.9 s.
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Fig. 3. CAD and dimensions of the part (hat section geometry) inFig. 3. CAD and dimensions of the part (hat section geometry) invvestigestigatated in the scope of this studed in the scope of this studyy

3.2 Thermof3.2 Thermoforming simulation rorming simulation resultsesults

Figure 4 is a sequence of results for the temperature distribution in thermoforming simulation, including the gravity

step of 6.0 s, in which the blank is dropped on the lower tool, as well as 2.0 s of thermoforming with moderate

deformation until the mold gap reaches the initial blank thickness. The thermoforming stage is accompanied by

significant temperature changes at the lower surface and moderate temperature changes at the top surface induced by

the longer time of tool-ply contact at the bottom surface. Based on this, a significant temperature gradient is rendered

onto the blank already in the thermoforming stage (cf. Figure 5).

Fig. 4. A sequence of rFig. 4. A sequence of results fesults for the tor the temperemperaturature distribution in thermofe distribution in thermoforming simulationorming simulation

Fig. 5. Detailed view tFig. 5. Detailed view temperemperaturature distribution in thermofe distribution in thermoforming simulation at 8.0 sorming simulation at 8.0 s
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3.3 Squeeze flo3.3 Squeeze flow simulation rw simulation resultsesults

Figures 6 and 7 present a sequence of simulation results of the temperature distribution for the squeeze flow stage. It

is observed that the CEL approach is capable of predicting material flow and the filling of the mold. For this application

example, a flow length of approximately 10.0 mm is required to fill the mold. Mold filling along with significant

temperature changes at all surfaces is observed. Finally, temperatures close to the tool temperature are observed at

the top flanges and lower surfaces. The detailed view in Figure 7 reveals that heat loss is mainly restricted to the blank

surfaces, whereas the core remains significantly hotter.

Fig. 6. A sequence of rFig. 6. A sequence of results fesults for the tor the temperemperaturature distribution in squeeze floe distribution in squeeze flow simulationw simulation

Fig. 7. Detailed view of rFig. 7. Detailed view of results fesults for the tor the temperemperaturature distribution in squeeze floe distribution in squeeze flow simulationw simulation

The material is mostly in the molten material state (𝑋 ≤ 0.15) throughout thermoforming and squeeze flow (cf. Figure

8). However, the onset of recrystallization is observed, revealing the importance of considering crystallization kinetics

for process simulation, since severe recrystallization and thus solidification already during processing might occur for

a slower press profile. Also, some minor unfilled areas along the longitudinal part edges are predicted (cf. Figure 8).

Here, it should be noted that the modeled press profile is fully displacement-controlled. Usually, the press switches

from a displacement- to a force-control as soon as a prescribed maximum force is reached. This is not considered so far

in simulation and might influence the predicted squeeze flow.
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Fig. 8. RFig. 8. Relatielativve crye crystallinity at the end of squeeze flostallinity at the end of squeeze flow (tw (top view)op view)

4 Conclusion and outlook4 Conclusion and outlook

A sequential approach for process simulation of glass mat thermoplastics using the commercially available software

package ABAQUS/Explicit in combination with user-subroutines is presented. The proposed approach consists of

two sequential steps, namely thermoforming and squeeze flow simulation. Both approaches use the same three-

dimensional, thermomechanical constitutive equations implemented in a material user-subroutine (VUMAT), including

an equation of state, a non-linear shear-viscosity model, and a crystallization kinetics model. However, different

numerical techniques are adopted. The thermoforming step uses a Lagrangian modeling approach to efficiently capture

the forming behavior. In contrast, the squeeze flow step uses a Coupled-Eulerian-Lagrangian (CEL) approach, to

appropriately capture material (squeeze) flow.

The proposed approach is successfully applied to a hat section geometry and Tepex flowcore, including a gravity

step, thermoforming, and squeeze flow simulation. It is observed that the heat loss due to tool-ply contact renders a

significant temperature gradient onto the blank. Temperatures close to the tool temperature are observed at the blank

surfaces, whereas the core remains comparably hot. Also, the onset of recrystallization is observed. Therefore, using

a thermomechanical approach including modeling of crystallization kinetics is expected to be seminal for process

simulation of GMT materials and Tepex flowcore.

For future studies, a substantial step will be the validation of this approach using experimental processing tests.

Moreover, the further development of the constitutive equations will be emphasized. This will include anisotropic

viscosity modeling, to account for shear- and elongational viscosity separately. Furthermore, the results of the

squeeze flow simulation will be transferred to an additional simulation step to predict cooling and process-induced

deformations (PIDs) including spring-in and warpage. To obtain a numerically efficient and accurate approach, implicit

time integration and a Lagrangian approach will be adopted for this step.
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