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AAbstrbstractact.. The continuous research for progressively lighter components moves the attention on the massive

adoption of Al alloys. The achievement of such an ambitious goal passes through the definition of innovative

manufacturing methodologies able to overcome some of the most hindering limitation of Al alloys, i.e. their

poor formability at room temperature. A viable approach is based on the modification of the blank properties

through a local heat treatment (to achieve an optimized spatial distribution of ductility/strength), so that the

subsequent forming operation can be carried out at room temperature. The implementation of such approach

relies on finite element simulations, where the use of a proper constitutive material model plays a fundamental

role. In the present work an innovative methodology, already proposed by the authors in a previous research,

is again adopted to enrich the characterization of a strain-hardenable Al alloy (AA5754), initially purchased in

a pre-strained condition (H32), and locally annealed by means of a laser treatment: in particular, Thanks to the

adoption of the DIC, the investigation of the anisotropy showed a strict correlation between the value of the

Lankford parameter and the material condition reached at the end of the local treatment. The experimental data

were fitted by a sigmoidal function and implemented in a modified Hill plasticity model for the simulation of the

tensile test of a locally treated dogbone specimen, showing a good accordance with the experimental results.

KKeeywyworordsds. Strain Hardenable Aluminium Alloys, Local Laser Annealing, Finite Element Model, Material

Characterization, Digital Image Correlation

1 Intr1 Introductionoduction

The environmental impact of the transportation sector, worsened by the development of the bigger urban centers, has

been considered one of the main issues to be tackled over the last decade: different normative frameworks have been

purposely defined in order to reduce the harmful emissions and keep the greenhouse effect under control [1,2].

Among the several solutions, the reduction of the vehicles’ masses has been indicated as the most promising one to

address the mentioned problem, which can be achieved by replacing the “heavier” components (mainly manufactured

using mild steel grades) with lighter structures made of Magnesium (Mg) or Aluminium (Al) alloys. It is widely

known and reported that such Al alloys can ensure a sensible reduction of the masses – thanks to their competitive

strength/weight ratio; on the other hand, the performance of such alloys are negatively counterbalanced by the poor

formability at room temperature that limits the achievable complexity and imposes the manufacturing of sub-parts to

be subsequently joined.

In the light of this scenario, the scientific research has put lots of effort to overcome such a limitation: the adoption of

an increased working temperature can both improve the formability [3,4] and reduce the springback phenomena [5];
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the adoption of a flexible medium for deforming the material represents another viable solution [6], which can be also

efficiently combined with the warm forming approach [7]; furthermore, in the last years, a new methodology has been

proposed, mainly based on splitting the process into two separate moments [8]: at first the blank initial properties are

modified by short-term local heat treatment (a favorable distribution of strength-ductility can be obtained according to

the component to be manufactured) so that the subsequent forming operations can be carried out at room temperature.

Such an approach has been already shown its effectiveness when applied to the deep drawing (at room temperature)

of 6xxx Al circular specimens (locally solutioned in the flange area) and achieving an increase in the Limit Drawing

Ratio of more than 20% [9,10]. Due to the large number of process parameters involved in the mentioned innovative

approach, the adoption of a numerical methodology is an unavoidable step: especially for the design of the forming

operations, where an accurate material model is a key aspect to improve the quality of the numerical predictions.

Due to the heterogenous nature of heat-treated blanks, full-field measurements can offer an accurate observation of

the material behaviour; an example of application can be founded in [11], where the Digital Image Correlation (DIC)

technique [12] is used to investigate the hardening behaviour of LHT specimens. In particular, the local variation of

material properties is expressed by employing spatial Fourier Expansions of the hardening law parameters, which are

inversely calibrated with the Virtual Fields Method (VFM) [13]. As a matter of fact, coupling full-field measurements

with inverse methods allows to perform the identification even on non-conventional tests. Thus, there is a wide class

of identification strategies developed for the calibration of plasticity models; for instance, in [14] the Finite Element

Model Updating (FEMU) technique is used to calibrate the Hill48 anisotropic plasticity model employing data from

uniaxial and biaxial tests, even in the case of more complex inhomogeneous specimens, as in [15] with a double

perforated specimen. Besides the FEMU approach, the VFM was employed for retrieving the constitutive parameters of

isotropic hardening models [16,17], kinematic hardening models [18] and, also, anisotropic plasticity models [19,20].

Taking advantage of the larger amount of material information provided by the DIC measurement, the authors already

developed an analytical-numerical characterization route geared toward the characterization the behaviour of a strain-

hardenable Al alloy, previously annealed via laser treatment, with a very limited number of tests [21]. As a follow up of

the proposed methodology, the attention has been focused on the anisotropy investigation, aiming at evaluating how

the normal anisotropy of locally heat-treated blanks is dependent to the percentage of annealing achieved.

2 Laser heat tr2 Laser heat treatment on dog-bone specimeneatment on dog-bone specimen

Dog-bone specimens, whose dimension were designed according to the ISO 6892 international standard, were

extracted along the rolling direction from a 1.5 mm AA5754 blank, initially purchased in a pre-strained condition

(H32). The specimens were then heat treated in the central region via a 2.5 kW CO2 laser unit and thus locally brought

in the annealed condition: the treatment head (A in Fig. 1a) is equipped with a Diffractive Optical Element (DOE) to

obtain a top-hat energy distribution over a 10 mm square spot. Before carrying out the local heating, the specimen was

previously sprayed with a blank paint (B in Fig. 1a) to increase the quantity of absorbed energy and positioned on a

hollow cylindrical cooler (C in Fig. 1a) to prevent an excessive heat conduction toward the ends.
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Fig. 1. Laser heat trFig. 1. Laser heat treatment on dog-bone specimen: a) the adopteatment on dog-bone specimen: a) the adopted eed experimental setup; b) the rxperimental setup; b) the resulting distribution ofesulting distribution of

harhardnessdness

The specimen was heated setting the laser power at 750 W for a duration equal to 4 seconds (the values of the process

parameters were defined via numerical simulation as detailed in [18]). Once cooled down to room temperature, the

distribution of properties was assessed via Vickers microhardness measurements (Qness Q10+ hardness tester; load:

0.2 kg; dwell time: 5 s) along the longitudinal symmetry path: the hardness profile shown in Fig. 1b (the 0 position

refers to the geometrical center of the specimen) suggests the effectiveness of the heat treatment in locally annealing

the material.

3 T3 Tensile tensile test on LHTest on LHTed specimensed specimens

Tensile tests on the laser-heated specimens were carried out on a 50 kN Zwick-Roell electro-mechanical testing machine

(A in Fig. 2a) under quasi-static conditions, thus applying a strain rate around 1E-4 s-1. Tensile tests were assisted by

the 2D-DIC system (C in Fig. 2a) pointing at the specimen’s surface (B in Fig. 2a) irradiated by the laser beam: as it can

be seen from Fig. 2b, a stochastic distribution of black dots on a white matte background was created and recorded by

the DIC camera (Pixelink® BU371F with an image resolution of 1280 × 1024 pixels) as a virtual grid for the full-field

measurements. The deformation history was retrieved by correlating the test images via the commercial software

MatchID®, employing a subset of 21×21 pixel2 and a stepsize of 5 pixels.

Fig. 2. TFig. 2. Tensile tensile tests on laser-heat trests on laser-heat treateated specimens: a) eed specimens: a) experimental setup; b) detail of the DIC measurxperimental setup; b) detail of the DIC measurement with anement with an

eexxample of Rample of ROIs subdiOIs subdivision. The colormap depicts the uniaxial logvision. The colormap depicts the uniaxial logarithmic strarithmic strain distribution typicallain distribution typically obtained ony obtained on

the specimen surfthe specimen surface.ace.
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4 In4 Invvestigestigation of the normal anisotration of the normal anisotropopyy

Following the approach presented by the authors in [11,22], the spatial distribution of the normal anisotropy was

evaluated by subdividing the 72×20 mm2 DIC gauge area into smaller regions of interest (ROIs), as illustrated in Fig. 2b.

Thereby, the displacement fields belonging to each ROI was derived in order to obtain the corresponding logarithmic

strain fields, according to the Hencky strain definition. Then, for each frame, the so-computed strain components were

averaged through all the values included in each investigated region.

Fig. 3. Distribution of normal anisotrFig. 3. Distribution of normal anisotropopy accory according tding to the maximum heat-tro the maximum heat-treatment teatment temperemperaturature using twe using two Ro ROI’s size.OI’s size.

The normal anisotropy was expressed by means of the width-to-thickness plastic strain ratio, also known as Lankford

coefficient and commonly indicated as R-value. Since the employed 2D-DIC technique provides only the in-plane strain

components, the through-thickness plastic strain 𝜀𝑧𝑧
𝑝 was computed by involving the volume conservation law during

the plastic deformation, i.e. 𝜀𝑧𝑧
𝑝=−(𝜀𝑥𝑥

𝑝+𝜀𝑦𝑦
𝑝), where 𝜀𝑥𝑥

𝑝 and 𝜀𝑦𝑦
𝑝 indicate the longitudinal and transversal plastic

strains respectively.

Under the assumption that the treatment’s temperature is almost constant within each ROI, the normal anisotropy

distribution can be correlated with the peak temperature, according to the hybrid numerical-experimental approach

detailed in [22]. As already mentioned in Section 2, the laser treatment on the specimen was designed through

a thermal finite element model, aimed to study the temperature profile and the treatment duration producing a

predefined annealing distribution along the specimen surface. Therefore, the maximum heating temperature T from

the numerical analysis was matched with the corresponding ROI from the full-field measurement, allowing to visualize

the dependency of normal anisotropy with respect to different levels of annealing.

In Fig. 3, the R-value distribution vs. the maximum treatment temperature is reported for two ROIs partitions, namely

101 and 31 divisions, whose characteristic lengths correspond to 0.7121 mm and 2.32 mm respectively. Both datasets

show that the R-value increases from 0.38 (measured in proximity of the peripheral areas of the specimen) to 0.675

in correspondence of the LHT zone where the material is in fully annealed conditions. It is worth noting that material

points which experienced lower treatment temperatures – i.e. a minor level of annealing – are characterized by

R-values below 0.54, which corresponds to the width-to-thickness ratio measured on a fully H32 specimen machined

at the same material orientation; such important difference, however, can be related to the low plastic strain (<0.05)

achieved in these ROIs during the test, which does not provide enough data points for a realistic reconstruction of the

R-value behaviour.
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The normal anisotropy trend also exhibits a steep peak at T ~280°C, which can be associated to a local alteration of

stress triaxiality, driven by the rapid modification of material properties in the transition zone between the H32 and

H111 regions. In fact, neighboring ROIs characterized by a different level of annealing, under the same tensile load,

respond with a different deformation and strain behaviour. However, since material points at their interface must

respect the displacement continuity, an additional stress component along the thickness direction appears; such stress

component cannot be measured with the used DIC facilities and, in turn, not included in the R-value computation.

Despite that, the normal anisotropy alteration due to the annealing conditions can be approximated by employing a

sigmoidal function, creating, also, a link with the constitutive model introduced in [22] for describing the hardening

behaviour of the same heat-treated blanks; therefore, an analytic expression of the R-value can be defined as function

of the maximum heating temperature with the following equation:

where 𝑅𝑎𝑟 and 𝑅𝑎𝑛𝑛 indicate the normal anisotropy of the as-received material and fully annealed material respectively,

while 𝑚𝑅 and 𝑇𝑅
∗ are parameters regulating the shape of the sigmoidal function. The coefficients of the material model

were inversely calibrated through the minimization of the error between the experimental and predicted R-values.

In particular, the optimization problem was solved by using the SQP algorithm (Matlab® fmincon function) and the

resulting values are listed in Tab. 2.

Fig. 4. Comparison betwFig. 4. Comparison between eeen experimental Rxperimental R-v-value tralue trend and prend and predictions with fittedictions with fitted sigmoidal modelling.ed sigmoidal modelling.

Fig. 4 depicts the outcomes of the inverse calibration procedure, showing a good matching between the experimentally

measured behaviour of the normal anisotropy with the predicted one. Note that R-value data corresponding to the

lowest amounts of heat treatment temperature and the curve peak were not included in the identification process.

TTab. 1. Identified coefficients fab. 1. Identified coefficients for the Ror the R-v-value sigmoidal model.alue sigmoidal model.
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5 Numerical v5 Numerical validationalidation

The developed model for the description of the R-value dependency from the annealing grade was validated by means

of a numerical model of the tensile test on the AA5754 heat-treated dog-bone specimen. Therefore, the anisotropic

behaviour was modelled by means of a modified version of the Hill48 plasticity model, where the R0 is expressed

through the sigmoidal relationship in Eq. 1. The material modelling approach based on logistic functions was also

employed for the hardening behaviour, here included following the so-called HT-hardening model:

where 𝜎𝑎𝑟(𝜀𝑝) and 𝜎𝑎𝑛𝑛(𝜀𝑝) are the flow stress curves of the as-received and annealed material respectively, 𝜀𝑝

is the plastic strain. The hardening model coefficients were taken according to the results in [18], viz. 𝛽=0.01095,

𝑐𝛽=0.014323, 𝑇∗=301.85 and 𝜀0=0.005. All the constitutive modelling framework was introduced in the Finite Element

analysis via UMAT subroutine in Abaqus/Standard®.

Since both hardening and R-value material models require the annealing information, the numerical simulation

is based on a two-step analysis. First, the local laser heat treatment is simulated employing a transient thermal

analysis in order to obtain the temperature distribution on the specimen; so, the maximum temperature of the

treatment T is extrapolated for each node and employed the forthcoming 2D quasi-static structural analysis. Thus, the

numerical strain fields were used to compute the associated R-value using the same procedure adopted for processing

experimental data.
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Fig. 5. Comparison betwFig. 5. Comparison between the eeen the experimentallxperimentally measury measureded RR-v-value and the FEM pralue and the FEM prediction, with the prediction, with the proposedoposed

sigmoidal modelling.sigmoidal modelling.

All the results are reported in Fig. 5, where the normal anisotropy retrieved from the FE model is compared with the

experimentally measured R-values and the reference sigmoidal modelling. Although there is no information about the

width-to-thickness ratio in other material orientations (namely 45° and 90° with respect to the RD), the numerical

analysis is capable of reproducing the normal anisotropy trend of the material at different annealing temperatures,

showing a reasonable agreement with the experimental data. It is worth observing that even the numerical predictions

present a marked peak at T~270°C, indicating a modification of the stress triaxiality in the zones characterized by a

rapid alteration of material properties due to the localized treatment. This is an important feature to consider in sheet

metal forming applications, since the stress triaxiality plays a fundamental role in ductile damage criteria which can be

efficiently used in stamping simulations [23].

6 Conclusions6 Conclusions

In the present paper, the methodology proposed by the authors in a previous research has been adopted for the

characterization of the anisotropic behaviour of a strain-hardenable Al alloys in wrought conditions (AA5754-H32)

locally annealed via laser heating. Tensile test on locally treated dog-bone specimens (extracted along the rolling

direction) showed that the resulting gradient of properties reflected in a variation of the Lankford parameter ranging

from 0.5 where the material kept its initial state up to around 0.65 in the fully annealed region; moreover, a steep peak

was recorded at T ~280°C, as a consequence of the local alteration of stress triaxiality risen in the transition zone.

The experimental values of the normal anisotropy coefficient were fitted by a sigmoidal function and implemented in

a modified Hill48 plasticity model: the tensile test was simulated (implementing the HT hardening model in a UMAT

subroutine) and numerical results were in good agreement with the experimental measurements, even though there

were no information regarding the normal anisotropy from other material orientations.

Future developments will be aimed at completing the investigation of the anisotropic behavior considering the other

material orientations so that more sophisticated plasticity models can be precisely calibrated, thus improving the

accurateness of the FE models for the simulation of sheet metal forming processes.
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