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AAbstrbstractact.. Peculiarities of the pultrusion manufacturing process lead to the occurrence of spring-in deformations,

whereas their value depends on the pulling speed. In this article experimental and numerical analysis was

carried out for glass fiber/vinyl ester resin 75 × 75 × 6 mm L-shaped profiles pultruded at pulling speeds of 200

and 600 mm/min. Spring-in angles of produced profiles were determined on the same day of manufacturing

when profiles cooled down to room temperature. Higher pulling speeds provoked increased values of spring-in.

2D numerical model accounting for thermo-chemical and mechanical composite’s behavior during pultrusion

was implemented in ABAQUS software. Cure Hardening Instantaneous Linear Elastic (CHILE) constitutive law

was used to describe matrix resin Young’s modulus evolution. Since both unidirectional (UD) rovings and fabric

material were utilized, effective mechanical properties of UD and fabric layers were calculated in accordance

with Self-Consistent Field Micromechanics (SCFM) approach. Spring-in angles determined within experimental

and numerical studies were compared and a good correlation was found: the errors were 12.6% and 6% for

the pulling speed of 200 and 600 mm/min, respectively.

KKeeywyworordsds. Pultrusion, Shape Distortions, Spring-in, Cure Hardening Instantaneous Linear Elastic Model, Finite

Flement Analysis

1 Intr1 Introductionoduction

The last decades have been marked by the significant growth of composites application within the engineering

community due to their superior properties over traditional construction materials (timber, concrete, steel) [1–4].

Fiber reinforced polymers (FRPs) exhibit such advantages as high strength-to-weight ratio, improved durability,

resistance to corrosion and influence of harsh environment, ease of transportation and handling [5,6]. Among all the

available techniques, the pultrusion manufacturing process is the most cost-efficient one [7]. It allows the production

of straight [8,9] or curved [10,11] profiles with constant cross-section and virtually unlimited length. Pultrusion

production starts from pulling reinforcement material (carbon, basalt, glass) placed on the fiber creel through a bath

filled with a polymer resin (vinyl ester, polyester, epoxy) [12,13]. Subsequently, impregnated material is guided to the

performer where it acquires the desired shape, and excess of resin is removed [14]. Next, the saturated pack is pulled

to the heating die, where the polymerization process of resin is initialized, and curing of composite takes place [15,16].

The puller units' system then drags the cured composite out of the die and directs it to the floating saw for the final

cutting of the profiles [17].

Pultrusion process involves many technological parameters affecting the quality of the final product [18,19]. The

occurrence of geometrical distortions (spring-in, warpage) [20] and internal defects (cracks, delaminations) [21]
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are the drawbacks of any composite’s manufacturing process. However, they arise not only due to technological

peculiarities, but also due to the mechanical and chemical properties of constituent materials [22]. For instance,

the severity of shape distortions is significantly affected, first, by the difference in the coefficients of thermal

expansion of the polymer resin and reinforcement material, and, second, by the chemical shrinkage of matrix [23].

Manufacturing-induced shape distortions lead to decreased mechanical properties of pultruded profiles at all lifecycle

stages (production, storage, assembling and service). However, the pultrusion manufacturer is intended to optimize

the production process by fabricating the maximum volume of profiles with the minimum geometrical and internal

defects. Instead of conducting expensive trial-error manufacturing cycles and adjusting process parameters for the

optimization of the pultrusion process outcome, the numerical modelling tool can be applied [24,25].

Numerical modelling of spring-in formation has already been studied in Resin Transfer Moulding (RTM) [26], Vacuum

Assisted Resin Transfer Moulding (VARTM) [27], and Autoclave [28] composite manufacturing processes. To the

best of authors knowledge, just a single article is devoted to the mathematical simulation of spring-in distortion in

pultrusion [29]. However, in the mentioned study, the experimental verification of the proposed model is performed

only at one pulling speed. The current article aims to experimentally and numerically investigate the relationship

between spring-in values of pultruded L-shaped profiles and different pulling speeds of the manufacturing process.

Pultrusion experiment of glass fiber/vinyl ester resin 75 × 75 × 6 mm Lshaped profiles was performed at two

different pulling speeds of 200 and 600 mm/min. Spring-in angles were determined for each profile a few hours

after the production process when the material acquired room temperature. Abaqus software was used for the Finite

Element Analysis (FEA) of a 2D mathematical model involving both thermo-chemical and mechanical analysis of the

pultrusion process. Cure Hardening Instantaneous Linear Elastic (CHILE) model was used to characterize the polymer

matrix instantaneous Young’s modulus. Self-Consistent Field Micromechanics (SCFM) method was utilized to describe

the unidirectional (UD) reinforcement and fabric material mechanical behavior. Numerical and experimental values of

spring-in were compared.

2 Mat2 Materials and Methodserials and Methods

2.1 Pultrusion e2.1 Pultrusion experimentxperiment

L-shaped E-glass reinforced vinyl ester profiles were produced using Px500-6T (Pultrex, UK) pultrusion system at the

Laboratory of Composite Materials and Structures of the Center for Design, Manufacturing and Materials (Skolkovo

Institute of Science and Technology, Moscow, Russia). Pultrusion line was equipped with a 600 mm long die. The

L-shaped profile, having dimensions of 75 x 75 mm and thickness of 6 mm, is schematically illustrated in Fig. 1a.

The core zone of pultruded composites was reinforced by 104 longitudinally oriented unidirectional rovings PS 2100

(Owens Corning Composite Materials, USA; tex. 9600) with a linear density of 9600 TEX (9600 g/1000 m), while the

surfaces of profiles were reinforced by two layers of E-glass fabric LT 0600/S 300/06H 01/125 GUS (Owens Corning

Composite Materials, USA) having a surface density of 900 g/m2. Therefore, the cross-section of the pultruded profile

has a multi-layer structure. The fiber volume fraction is not homogeneous, and each layer is characterized by a

different concentration of fibrous reinforcement: the overall volume fraction of reinforcement is equal to 59% in the

unidirectional layer and 50% in the fabric layer. The fibrous fabrics and rovings converging to the curingforming die

inlet are presented in Fig. 1b., while the cured profile leaving the die is shown in Fig. 1c.

Analysis of Spring-in Deformation in L-shaped Profiles Pultruded at Different Pulling S...

4743/2



Fig. 1. Pultrusion eFig. 1. Pultrusion experimental setup: (a) Scheme of the crxperimental setup: (a) Scheme of the cross-section, (b) fibross-section, (b) fibrous rous reinfeinfororcement concement convvererging in the dieging in the die

inletinlet, (c) cur, (c) cured pred profile leaofile leaving the die.ving the die.

The employed polymeric system is the combination of the vinyl ester resin Atlac 430 (DSM Composite Resins AG,

Switzerland), several catalysts (BYK A555, Trigonox C, Perkadox 16), and powder of zinc stearate as an additive. The

description of the kinetic behavior of the employed resin system and its composition are described in detail in a

previous work [21].

The curing-forming die was heated using electrical platens clamped on the die surface, as shown in Fig. 1c. The power of

the heating platens was tuned by a control system to keep the temperature on the thermocouples embedded in the steel

die in the range of 145°C ± 10°C. The pulling speeds used in the performed experiment are 200 and 600 mm/min.

The shape distortions were evaluated after the profiles cooled down to room temperature. In particular, the spring-in

was evaluated comparing the L-shaped profiles to a steel tool having a calibrated internal angle of 90°, according to an

approach already described in several previous works [21,30].

2.2 Numerical implementation2.2 Numerical implementation

To analyze the evolution of the shape distortions and to detect how the curing cycle affects the profiles’ deformation, the

thermochemical and mechanical behavior of performed experiments were numerically modeled in ABAQUS software.

As a stationary pulling process is considered, the 2D heat conductivity equation in the material frame of reference can

be expressed as following (neglecting the heat conduction in the pultrusion direction) [22,31]:

Where 𝐶p,comp and 𝜌comp are the specific heat and the density of the lumped composite material; 𝑇 represents the

temperature; 𝑥 and 𝑦 represent the coordinates of the cross-section; 𝑘 is the thermal conductivity of the lumped

composite material in the crosssectional plane; 𝑡 represents the time; 𝑞 is the exothermal heat generation of the resin

related to the cure reaction. The specific heat, density, and thermal conductivity terms were evaluated, combining

the properties of reinforcement and resin matrix, accounting for their fractions [31,32]. The above written Eq.1 is

implemented separately for the layer with unidirectional and fabric reinforcement since different volume fraction of

reinforcement is involved. Besides, the pulling speed 𝑢 is absent in Eq. 1 since it was written for the Lagrangian frame

of reference. However, the term of pulling speed appears at the boundary condition equations defining interaction
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between the moving composite and surrounding media (die or air, respectively):

Where Г corresponds to the surface of the profile; ℎdie and ℎair are the convective heat transfer coefficients between

the profile and die (within the die block) and surrounding air (after profile left the die block), respectively; 𝑇die and

𝑇amb are the temperatures of the die block (as a function of 𝑧 coordinate) and ambient air.

The heat generation term involves the volume fraction of fiber 𝑉F, the resin density 𝜌R, and the total heat energy 𝐻tot

produced by the resin per unit of mass in a complete polymerization, as described by Eq. 4:

The term 𝑑𝛼⁄𝑑𝑡 is the cure rate. The kinetic of the adopted resin system follows the behavior described by Eq. 5 [21].

The kinetic parameters are reported in Table 1.

Where 𝐴 is a preexponential factor; 𝐸α is an activation energy; 𝑅 represents the universal gas constant; 𝑛 is the order

of reaction; 𝐾cat is an activation constant.

TTable 1. Rable 1. Resin kinetic paresin kinetic parametameters.ers.

The mechanical model of the composite accounts for the properties of the different components involved and for their

chemical evolution during the pultrusion process. While the properties of the E-glass fiber are constant during the

process, the stiffness of the resin significantly changes due to the cure reaction. The variation of Young’s modulus of the

resin was described by CHILE model [33]:
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Where 𝑇∗ = 𝑇g(𝛼) − 𝑇; 𝐸0
R and 𝐸∞

R represent the elastic modulus of the uncured resin (𝛼 = 0) and of the fully cured

resin (𝛼 = 1), while 𝑇c1 and 𝑇c2 are the critical temperature respectively at the activation and at the completion of the

glass transition, evaluated by dynamo-mechanical analysis (DMA) of the resin system [34,35]. The instantaneous glass

transition temperature 𝑇g(𝛼) is evaluated using Di Benedetto equation [36]:

Where 𝑇g,0 and 𝑇g,∞ represent the glass transition temperatures of uncured and fully cured resin, and 𝜆 is a material

parameter.

The isotropic incremental resin shrinkage strain ∆𝜀R is expressed as a function of the increment of cure ∆𝛼 and of the

total volumetric resin shrinkage 𝑉sh , as described by Eq. 8 [26]:

The mechanical behavior of the profile core (reinforced by unidirectional rovings) and outer layer (containing E-glass

fabrics) is calculated using the SCFM approach [33,37].

ESAFORM 2021. MS02 (Composite), 10.25518/esaform21.4743

4743/5

https://popups.uliege.be/esaform21/docannexe/image/4743/img-7.png
https://popups.uliege.be/esaform21/docannexe/image/4743/img-8.png
https://popups.uliege.be/esaform21/docannexe/image/4743/img-9.png


Fig. 2. Modelling of the prFig. 2. Modelling of the profile crofile cross-section and applied boundary conditions.oss-section and applied boundary conditions.

Fig. 2 shows the modelled and discretized 2D geometry developed in the ABAQUS software. The profile cross-section

is divided into 3 zones, characterized by different mesh sizes, corresponding to the two surface layers reinforced by

fibrous fabrics and the core reinforced by rovings. The surface layers have been designed 0.7 mm thick, in agreement

with previous measurements performed with an optical microscope. The profile core is 4.6 mm thick. Aiming to reduce

the computational effort, just half of the L-shaped cross-section geometry has been modeled applying symmetry

conditions on the symmetry edge, as indicated in Fig. 2. The section has been discretized using 4-node plane strain

thermally coupled quadrilateral elements (CPE4RT). The die has been modelled as a discrete rigid body. A normal hard

contact condition has been implemented to describe the mechanical interaction between the die and the composite.

The die displacements and the rotations of the die have been inhibited utilizing constraints applied on the L-shape tip

point, as indicated in Fig. 2. Simulation has been divided in three steps, namely the initial step, the diecrossing step,

and the constraint-free step.

The initial step provides the initial conditions for the simulation, which consists of null cure degree and material

temperature equal to the lab temperature equal (18°C). The hard contact between the die and the profile cross-section

is introduced.

In the die-crossing step the heat transfer starts. The profile of temperature evaluated by the thermocouples embedded

in the steel die during the pultrusion experiment is included as an imposed temperature on the die surface. Since the

thermal acquisition has been made in seven points (die entrance, five embedded thermocouples, and die outlet), the

die length has been divided into six portions, and the imposed temperature in each timestep has been defined by linear

interpolation of the two closest measurement points.

In the constraint-free step, the interaction between the rigid die and the FRP profile is released. In this step, the heat
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transfer is based on the free convection between the air at laboratory temperature (18°C) and the pultruded profile's

peripheral zone.

3 R3 Results and Discussionesults and Discussion

Fig. 3 shows the schematic representation of spring-in deformation (Fig. 3a) and magnitudes of displacements within

the pultruded material for the profiles produced at pulling speed of 200 mm/min (Fig. 3b) and 600 mm/min (Fig.

3c). Due to the symmetry of the L-shaped profile, only its half was considered. Therefore, analyzing the numerical

simulations results, half of the spring-in angle (𝜑⁄2) was calculated. Higher pulling speed provoked a higher value of

spring-in distortion. Comparison of the experimental and numerical results of spring-in distortion (𝜑) are presented in

Table 2. The error was 12.6% for the pulling speed of 200 mm/min, and 6% for the pulling speed of 600 mm/min.

Fig. 3. Spring-in defFig. 3. Spring-in deformation of L-shaped pultruded prormation of L-shaped pultruded profile: (a) Schematic rofile: (a) Schematic reprepresentation of spring-in defesentation of spring-in deformation, (b)ormation, (b)

spring-in of prspring-in of profile profile produced at pulling speed of 200 mm/min, (c) spring-in of produced at pulling speed of 200 mm/min, (c) spring-in of profile profile produced at pulling speed of 600oduced at pulling speed of 600

mm/min.mm/min.

TTable 2. Vable 2. Values of spring-in defalues of spring-in deformation.ormation.

4 Conclusions4 Conclusions

An experimental and numerical investigation on pultruded glass fiber/vinyl ester resin L-shaped profiles were carried

out to analyze the relationships between the pulling speed and spring-in deformation. Profiles were manufactured at

pulling speeds of 200 and 600 mm/min. Values of their spring-in distortions were measured as soon as profiles cooled

ESAFORM 2021. MS02 (Composite), 10.25518/esaform21.4743

4743/7

https://popups.uliege.be/esaform21/docannexe/image/4743/img-11.jpg
https://popups.uliege.be/esaform21/docannexe/image/4743/img-12.png


down to room temperature. Subsequently, the numerical model of the pultrusion process was developed in ABAQUS

software. To describe Young’s modulus of resin during the polymerization reaction, CHILE approach was utilized.

Mechanical properties of unidirectional and fabric layers were calculated in accordance with the SCFM theory.

Results of the pultrusion experiment and mathematical simulations were compared and found to be in a good

correlation between each other. Higher pulling speed provoked more pronounced spring-in distortions. The difference

between experimental and numerical results was as much as 12.6% and 6% for the pulling speed of 200 and 600 mm/

min, respectively. Therefore, the developed numerical model, based on CHILE approach, is able to predict the value of

spring-in deformation of L-shaped pultruded profiles with a high level of accuracy.
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