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ON THE VARIETIES Pinp
OF OCKHAM ALGEBRAS

J.C. VARLET and Jilia VAZ DE CARVALHO*

ABSTRACT. We consider the varieties Ps,, o of Ockham algebras, i.e., those in which
for any element = of the dual space X of the algebra, the equality g™ (z) = z
holds. We use the same method as in [5] and show that these varieties have specific
properties and consequently are more tractable than the others. In particular, all the
subvarieties of Payn o can be characterised by axioms that are self-dual. We apply
these properties to the description of Pg g and Pigg.

1. INTRODUCTION

This paper is a sequel to [5] and we assume familiarity with it. Most notions that we
are dealing with can be found in [5], where the reader is given a complete bibliography.
We just recall that an Ockham algebra is an algebra (A;V,A,~,0,1) of type
(2,2,1,0,0) such that (4;V,A,0,1) is a bounded distributive lattice and ~ is a dual
endomorphism:
~avh)=r~aA~b  ~(@Ab)=~aV~b ~0=1 ~1=0,
and that the space X dual to A is endowed with an order-reversing and continuous

map g.
We denote the variety of Ockham algebras by O. Among the subvarieties of O are

the subvarieties P, (m > n > 0) defined by
Ac Pm,n - gm(ﬁ?) = g"(af), Vze X.

* This work was supported by Fundagio para a Ciéncia e Tecnologia, Centro de Algebra da Uni-
versidade de Lisboa and Project POCTI/32440/1999 of FEDER.
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Particularly interesting are the subvarieties Py, which are considered here.
In these subvarieties the mapping g: X — X is an involution of period 2m; if m = 1,
we obtain the variety P;q of de Morgan algebras.

We develop a method for describing A(Pamg), the lattice of subvarieties of Py, g,
and for giving each subvariety of Py, o an adequate equational basis. The method does
not differ fundamentally from the one that is used in [5] but offers many simplifications
that clarify the problem. Indeed, the subvarieties Py, have remarkable properties
that are not shared by the other Py, ,. It is mainly due to the fact that the map g is
a bijection.

The subdirectly irreducible algebras of Pa, o are simple (in other words, every variety
Py, is semisimple) and have been described in [2] and [4]. We give a brief outline.

Let (X, <, g) be the dual space of a subdirectly irreducible algebra which properly
belongs to Pamyp, that is, which belongs to Py, but to no strictly smaller class, and
denote the elements of X by 0,1,...,2m — 1. The order-reversing map g is defined by

, i+1 ifi€{0,1,..,2m—2};
9(@) = o
0 fi=2m-1.
The subset I'(0) = {z € X| 0 < z, z < m} determines the whole structure of X.
I T'(0) = {r1,...,7%} then the number of connected components of X is
t = ged(m, 7y, .. i) .

It follows that X is connected if and only if m.rq, ..., 7 are coprime.
Every connected component of X is either a generalised crown or a singleton.
The cardinality of Si(P3p0) has been determined in Theorem 2.25 of [6):

|Si(Pamo)l = D(2m) + > ¥(p)

plm

where D(2m) is the number of divisors of 2m and ¥(p) = 2l 1.
The number a,, of non-isomorphic simple Ockham algebras that properly belong to
Py, 0 is given by :

20m+1)/2 i 1 35 odd .

The paper is organised as follows. In section 2 we show that all the g-relations on
the dual space X, i.e., all the relations g*(z) > ¢’(z) for a given z € X, can be written
in a canonical form:

om/2 if m is even ;
Qm =

g>g" or ¢°>g° foriodd, 1<i<m:
¢d=gq° forieven, 2<i<m and i|2m.
We determine the partially ordered set of the implications that link the g-relations,
so obtaining for each Pj, o the number of non-equivalent g-relations.

We also analyse the consequences of the conjunction of two g-relations. We are
mainly interested in the following opposite cases:

— the conjunction of two g-relations implies any g-relation definable on X:
~ the conjunction of two g-relations does not yield any new g-relation.
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The above considerations enable to construct the “Cayley table” of the g-relations.

Then we turn our attention to the g-relations that are satisfied by all the elements,
as well as to the disjunction of a finite number of such g-relations. These disjunctions
of g-relations are called axioms and have the strong property of being self-dual.

Sections 3 and 4 contain two illustrative examples: Pgo and Pigp. The choice of
the first example is justified by the fact that this variety has been already studied
by M. Ramalho in [3], so enabling to compare results obtained by different ways.
The analysis of P reveals how things are getting more complex when m is increasing,
as is shown by the following table:

characteristics of the variety Pso | Piop
number of non-equivalent g-relations 5 7
number of non-equivalent axioms 14 42
number of subdirectly irreducibles 8 12
number of subvarieties (including the trivial one) | 20 70

2. MAIN PROPERTIES

In Py, the mapping g: X — X is a bijection with g~ ! = g?™"1. We may define
g° with s < O
=" ="
Clearly, g~! is order-reversing; more generally, ¢° is order-reversing if and only if ||
is odd and ¢* is order-preserving if and only if |s| is even.
Very often we omit the letter z and write, for instance, ¢® > ¢° instead of

9*(z) 2 ¢°(z).
Theorem 1. Let i be even and i € {2,4,...,2m — 2}. In Payo we have

¢2P = P 2d = ¢d=¢ = &=7,
where k = ged(2m, 7).
Proof: Consider any g-relation g¢ > g° with even ¢ and i < 2m. Then

P<g<< <P =4",
hence g° = g
Similarly, from g° > ¢ follows g° = g*. So we have
i = ¢2¢ = g=4".

Now let k = ged(2m,4). Suppose g* = g°. So there is s € N such that ¢ = sk, hence

g'(a) = g*(z) ==
Conversely, suppose that gi(z) = z. By the Bezout identity, there are 5,¢ € Z such

that k =2ms+it. So
g (z) = g™ g(z) = "™ (@) =z . ©
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Theorem 2. In Psy, every g-relation is equivalent to a g-relation of the form

g>g" withiodd, 1<i<m,
or g®>gt withiodd, 1<i<m,
or gt=g° withieven, 2<i<m, i|2m.

Proof: Consider any g-relation ¢ > ¢* with 0 < j,k <2m — 1 and j # k.

If j is even, then g7 ¢/ > g7 g*, that is ¢° > g¥7 = ¢* with s = k — j (mod 2m)
and 1 < s < 2m. If s < m, then ¢/ > ¢* is equivalent to g° > ¢° with 1 < s < m.
If s >m, then 1 < 2m — s < m and we have

P >g = " >¢% ifsiseven

and
P> = @" <" ifsisodd

If j is odd, then g77 g% < g7 g*, that is g° < g*~7 and the proof goes on similarly to
the previous case.

Now suppose that z satisfies g*(z) > ¢%(z) or g°(z) > g*(z) for k even, 1 < k < m.
By Theorem 1, z satisfies g'(z) = ¢°(z) where i = gcd(Zm k), and consequently 7 is
even, 2<z<mandz|2m O

In what follows we shall use the notations [7] and [¢'], 1 < ¢ < m, for the g-relations
g' > g° and ¢g° > ¢¢, respectively. Of course, in case i is even, [i] will mean g° = g°.

In Py, the g-relations are not completely independent and some implications be-
tween them exist, at least when the exponents of g are even.

Theorem 3. Let L € Pop g and 1 < 4,5 <m.

(1) If i is odd, then each [i] and [¢'] is independent of all the other g-relations.

(2) If i is even and divides 2m, then [i] 4s independent of all the g-relations [j] and
[4] with j odd.

(3) Ifi and j are even and divide 2m, then [i] = [j] if and only if i divides j.

Proof: To prove (1) it suffices to exhibit an algebra I € Py, whose dual space
X has an element that satisfies [i] and no other g-relation and proceed similarly for
[¢']. Let L be the simple Ockham algebra whose dual space X = {0,1,...,2m — 1}
satisfies I'(0) = {i} with { odd, 1 < ¢ < m. The space X has ¢t = ged(m, i) connected
components each of which is a Zt-crown. Whatever value ¢ may have, the element 0
is covered exactly by ¢ and 2m — i. Hence for any j such that 1 < j < m, j # i, the
g-relation [] is not satisfied by the element 0. Similarly, any [kl with k£ odd, 1 £ k& < m,
and any [/] with { even are not satisfied by the element 0.

To prove that [¢'] is independent of all the other g-relations, we consider the same
algebra L. The element 2m — i of its dual space satisfies [i'] and none of the other
g-relations.
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The proof of (2) follows exactly the same way. Let 7 be even, 2 < ¢ <m and i|2m.

Consider the antichain X = {0,1,...,¢ — 1} with
z+1 f0<z<i—1;
g(x)“{o fr=i—1.

The dual algebra L belongs to P; o C Papp, satisfies [i] but no g-relation [5] or [4]
for j odd.

Finally, let i,j be even and such that 2 < 4,7 <m, i|7 and j|2m. It follows that
j =ik for some k. If z satisfies [i], it also satisfies [j] since ¢°(x) = x implies g*(z) =z,
i.e., g/(z) = x. Conversely, if [i{] = [j], then i|j. In fact, consider again the antichain
X ={0,1,...,i — 1} with g as in (2). The element 0 satisfies [i] and no other relation,
except those [j] for which j = ki <m. ¢

Corollary. In Py, the number of non-equivalent g-relations is

m+ D(m) if m is odd ,

m+D(m)—1 ifm is even,

where D(m) is the number of divisors of m.

Proof: Suppose that m is odd. We have

Hi:z‘odd. 1§7’§mH=-m2L1:

I{‘i: ieven, 2<i<m, 2'12771}'21{7‘: i=2s, s#m, s|m}i =D(m)—1.

The number of non-equivalent g-relations is m + D{m).
Now let m be even.. We have

Hz’:iodd, 1§i<m}]=%;
l{z ieven, 2<i<m, il?m}i =D(m)~-1.

The number of non-equivalent g-relations is m+ D(m) — 1. ¢

Examples. In Py there are 13 non-equivalent g-relations:

B R N (R Y LR
In Payg there are 17 non-equivalent g-relations:
8 n2)
i 0m s B8 m o )
2
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The interplay of the g-relations on the dual space X can be clarified by considering
the conjunction of all pairs of such g-relations: if an element z € X satisfies two
g-relations, say Ry and Ry, does it satisfy other g-relations? Not surprisingly three
cases are possible:

1) z satisfies R, and R; but no other g-relation;

2) z satisfies all g-relations;
3) z satisfies some g-relations in addition to R; and Rs.

The first two cases are particularly interesting and it is worth giving them a special
name.

A pair of g-relations will be said sterile if the conjunction of these g-relations does
not imply any new g-relation. On the contrary, a pair of g-relations will be said fruitful
if the conjunction of these g-relations implies all the g-relations definable in Py, p.
For brevity we shall write [z, j] instead of [{] & [j} and improperly [z, 7] will be called a
pair.

The following lemma is obvious.

Lemma. Let A€ Panpandm>i>j2> 1.

Ifj is even, then g > ¢ & [i — j] and ¢ > ¢* & [(i — j)].

Ifjis odd, then g > ¢/ & [(i — j)] and ¢ > ¢t & [i — j].

The following table indicates some immediate consequences of the conjunction of two
g-relations among {[i], [}, [7], ']} which are indicated at the top of the relevant column.

m2i>j=1 1[4 |[57] |7 [, 4]
i\ odd i-5] |li-3]
iodd, j even |[i—j] | [G—g)]|[i-J] |[E—2)]
i even, j odd | [i—g} | [(6—5)V]| [ —5)]|[i—J]
i,j even li-g1 -4 |li-3] |[-]]

Theorem 4. Let A € Py p.
(1) [m, m] is sterile.
(2) Ifi,j are odd and m > i > j > 1. then [i,j] and [¢',j] are sterile.

Proof: In every case it suffices to exhibit an example in which the pair in question is
sterile.

(1) Take the simple algebra whose dual space is the antichain {0, 1,...,m — 1}. This
algebra belongs to Py, C Paypo. Clearly ¢g™(0) = 0 and the element O satisfies [m]
and [m/] solely.

(2) Take the simple algebra that properly belongs to Pam o and in which T'(0) = {4, j}.
Clearly, the element 0 satisfies [¢] and [§], but no other g-relation, and the element 2m—i
satisfies [¢'] and [j'] but no other g-relation. ¢
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Now we determine some fruitful pairs of g-relations.
Theorem 5. Let A € Pay. Ifi < m is odd and coprime with m, then [i,7'] is fruitful.

Proof: We have
§2" & >4 = ¢"=4¢=¢" YneZ.
Since 4 is coprime with 2m, there are p,q € Z such that pi = 2mqg+ 1. It follows

that g” = g¥™t!l = g,
Since g** = ¢°, we have g° = g, all powers of g are equal and [z, 7] is fruitful. ¢

Theorem 6. Let A € Py,,o. Let also i, be odd and such thatm >4 >3 > 0. If j is
coprime with m or if i is coprime with j, then [i, '] and [¢', 7] are fruitful.

Proof: Let j be coprime with m. By the Lemma, [i,j] = [i — j] and [¢,¢i — j] =
[i — i+ j] = [j]. By Theorem 5, [4, ] is fruitful. It follows that [4, j'] is also fruitful.
In a quite similar way one can show that [¢/, 5] is fruitful.

Now let j be coprime with 7. Since [f, '] = [ — j], we have

FP=¢"7= g, VYnelZ. -

Moreover, [i,i — j] = [j] and [j,j'] = ¢° = ¢’ = g™, Vn € Z. From ged(i,5) = 1
follows ged(i — 7,7) = 1. So there are p,g € Z such that pj = ¢(i — j) + 1. We thus
have

P =g =g = g0gl =g,

All powers of g are equal and [¢, 7] is fruitful.
The proof of [/, j] fruitful is quite similar. ¢

Corollary. Let A € Py with m prime and let i,j be odd with m > ¢ > 5 > Q.
Then all [i,j'] and [¢/, j] are fruitful, except if i = j = m.

Proof: If i = j = m, then [4, j'] = [¢/, j] = [m, m'] which is sterile, by Theorem 4.
If i = § < m, then [§,5] = [/,j] = [i,#] with ¢ odd and coprime with m and we

apply Theorem 5.
If m >i>j >0, then j is coprime with m and it suffices to apply Theorem 6. ¢

If one element of a pair of g-relations is odd and the other is even, then the following
theorem can be applied.

Theorem 7. Let A € Py, 2k +1 < m, 2n < m and njm. Then, for everyt € N
such that |2(k — tn) + 1| < m, [2k + 1, 2n] implies [|2(k — tn) + 1|] and [(2k + 1)',2n]
implies [|12(k — tn) + 1]].

Proof: Note first that the necessity of the assumptions on & and n follow from Theo-
rem 2.
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We have
[2k +1,2n] <= ¢**1 > " & ¢° = g™
— P> 0 & @ =g¥ (teN)
_ g2k+1 > gztn
— 92(k—-tn)+1 > gO
s g2k=tnHll > o0 gince 2(k—tn)+1 isodd .

The algebra A satisfies [|2(k — tn) + 1|] for every ¢ such that |2(k —tn) + 1| < m.
That [(2k + 1)’,2n] implies [|2(k — tn) + 1|'] is proved in a similar way. ¢

Example. Let A € P39 and k = 2. Since 2n < m and n|m, the possible values of n
are 1,2,3.

If n = 1, the condition |2(2 — t) + 1} < 6 is satisfied by £ = 1, ¢ = 2, and yields
[5,2] = [3], [5,2] = [1], respectively. -

If n = 2, the condition |2(2 — 2t) + 1| < 6 is satisfied by ¢t = 1, ¢ = 2, and yields
[5,4] = [1], [5,4] = [3], respectively.

If n = 3, the condition |2(2 — 3t) + 1| < 6 is satisfied by ¢ = 1 and yields [5,6] = [1].

Theorems 4-7 are very useful for the construction of the Cayley table of the
g-relations, as it will be seen in the examples Pgg and Pigo which follow.

Now we turn our attention to the g-relations that are satisfied by all the elements
of the dual space and for which we use parentheses instead of brackets. For instance,
the notation (3') will mean that all the elements z of the dual space X satisfy z =
g°(z) > g°(z). Such g-relations, as well as the disjunction of a finite number of them,
will enable us to define all the subvarieties of Pan,o and therefore receive the name of
ozioms. As an example, (11'52) means that all the elements z of X satisfy g(z) > =
or z > g(z) or g°(z) >z or ¢*(z) = x.

The subvarieties Pap, o enjoy the following interesting property.

Theorem 8. In Panyo all the azioms (as defined above) are self-dual.

Proof: Every axiom is the disjunction of g-relations of the form z > g*(z) and
¢/(z) > z. Hence it can be written

(1) (VzeX) z>g' @) Vz>g2@)V..Vgi(z)2zV g z)2z V..

By substituting g(z) to z in (1) we obtain v
(VzeX) g(z)2g"*(z)V g(z) =g (@) V ... V ¢ (2) 2 9(2) V g7 (2) 2 9(2) V ...
from which we deduce that

(VzeX) g™ lg(z) < g™t (z) V.. vV ¢ g (@) < g?" M g(a) Vo
that is
(2) (VzeX) z<g*@) Va<g?(z)V..Vvgi(m) <zVgiz)<zV..

Clearly (2) is the dual of (1). ¢
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Theorem 8 reduces the number of non-equivalent axioms by half since for any i, , ...
odd we have
@) =), @4)=W3), @)=05),
and if k£ is even
(ijk)=("3k), (@ik)=(7k).
We lay stress on the fact that in the axioms the juxtaposition of the letters means
disjunction, whereas in the g-relations a comma means conjunction.

Theorem 9. In Py the number of variables in every ~-inequality can be reduced
to 1 or 2. It can be reduced to' 1 if the notation of the aziom involves no dashed odd
number or involves, apart from even numbers, only dashed odd numbers.

Proof: By Theorem 1, if i is even, g' > ¢° is equivalent to ¢® > ¢'. Thus in the
tabulation, the row corresponding to [i] can be written with 0 in the first column and
i in the fourth, or vice-versa.

If the odd numbers involved in the axiom are all dashed, all rows in the tabulation
can be written with O in the first column., Applying Theorem 5.3 of [1], we get a
~-inequality with one variable. Similarly, ‘writing the rows corresponding to the even
numbers with 0 in the fourth column, if the axiom involves no dashed odd number, we
get a ~-inequality with one variable. It is now obvious that with a similar reasoning we
conclude that in Py, o the number of variables in every ~-inequality can be reduced
tolor2. ¢

Example. Consider the axiom (11'33'2) in Pgp. Its tabulation is

- - 1 0
o 1 - -
- - 3 0
0o 3 - -
0 — — 2

In the 1% column, on the 2%, 4™ and 5™ rows, we have the same digit 0. In the
4*F column, on the 1% and 3' rows, we also have the same digit 0. Hence two variables,
say a and b, are sufficient to define the corresponding ~-inequality:

aA~aA~3a < ~2aVvby ~bV~2h.

3. THE SUBVARIETY Psg

Step 1. By the Corollary of Theorem 3, there are in Pgp five non-equivalent
g-relations:

[g>e Me2g Bl P20 B2 Rg=4"-
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Ordered by implication, they form an antichain:

o

(1]

Y 3] 31 (2

FIGURE 1

Step 2. Using Theorems 4-7 we obtain the following table:

We recall that the letter A means the set of all non-equivalent g-relations, so it is
used for the fruitful pairs. The sign / means “nothing new” and is used for the sterile

pairs.

Step 3. Using Theorem 8 and some elementary considerations we show that there
are 14 non-equivalent axioms in Pgq (the equivalences due to the fact that the axioms

& 11 BBl
1] A/ A
(1] A/ B
3] /0
3] AR
[2] -

TABLE 1

are self-dual are indicated by the sign i):

)<

(133 ;

1) £@);
(3) = (3) = (13
(11 ;

(13) £ (1'3) ;
(33) = (133'>-1—
(11'3) £ (11'3) ;
(11'33) ;

The above equivalences are easy to establish. For instance, since (12) <
(1'2) and, owing to [1,1] =

have (12) =
from (132) <

(12) &
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(1'3'2) we deduce (132) =
and [1,3] are both fruitful.

(13

2)=(12) £ (12);
(32) £ (32) =
(11'2) ;

(132) £
(33'2) =
(1132) £
(11'33'2) .

(1'32) ;
(133'2) &
(118'2) ;

(132) £ (1'3'2) ;

(12). Similarly,
(32) since [1,1']

[2], we obtain (2) =
(132) & (1'3'2), hence {132) =



The implications between these axioms are shown in the poset of Figure 2.

(11'33'2)

FIGURE 2

The axiom (1) implies all the other axioms since (1) means z = g{z), Yz € X, hence
z=g(z)=g¢*z)=...

Since (33') = (133'), we have (1'3) = (33).

The other implications are obvious.

In the ordered set of Figure 2 six elements are meet-irreducible; they form the subset

M= {(11’33’2), (11'33), (33'2), (11'32), (11'2), (32)} .

All the other elements except (1) and (3), can be expressed as conjunctions of ele-
ments of M:

(11'3) = (11'33') & (11'32) ;

(1'32) = (11'32) & (33'2) ;

(33) = (11'33) & (33'2) ;

(1) = (11'33) & (11'2) ;

(1'3) = (1133)) & (1'32)

= (11'33) & (11'32) & (33'2) ;
(2) = (11'2) & (32) .
Moreover we have
1) = (2 &(@3) = (112) & (32) & (3) .
Note also (see Table 2) that the simple algebra dual to C (resp. H) satisfies
(11) & (2) (resp. (11") & (1'3)) but not (1).

In conclusion, all the subvarieties of Pgq can be characterised by axioms belonging
to M U{(3)}.
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Step 4. The subvarieties of P of the form P,,, are ordered as follows:

" FIGURE 3

Using the results recalled in the Introduction, we obtain
ISi(Pso)l = D(6)+ > ¥(p) = 4+4 =8.
pi3
Moreover, we have a3 = 4 and a; = 2: there are 4 simple algebras that belong

properly to Pgo and 2 simple algebras that belong properly to Psg. Each of the
subvarieties Py and P3p contains a unique simple algebra. The description of the

eight simple algebras of Pgy is given in Table 2.
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(@) 1(8) €2 (%) (e)
ol 4 . TUNEEE]
o o (1] [ 337 [2]
B 0 1 _ 1017 x| @
Pag g 1101 X
' 1 g 101 [1] 777 [31 [37 [2]
C I g1 0 | Dx x x | (11,2}
0 1 X X X
01
FREEe (1] (27 3] 37 2]
D o o o g |1l 2 =
Psy 0 1 2 gz (2) ? ? ;< X 3)
5 1554 ¢ - [ (1] [3] [31] [2] o
T(0) =0 1
I3 Il 5 (1] (27 3] (3] [2]
F 0 64 62 0 X (33"
T(0) = {3} fo1 |1 x
Poo (&S ([ Els | umeme
: g 1 117 13] 131 [2
G m @13 4 |oTx (11')
1 X
() ={1}
1 3 5
1) (1] 3] 3] [2
" B&l : [X] ] {X] [37 2] ar.vs)
0 2 4 1 X X
['(0) = {1,3}
TABLE 2




The equational bases of column (¢) are in irreducible form. Furthermore, through
column (§) one can verify the exactness of Table 1: the elements 0 and 1 of H and D
show that [1,3], [1',3'] and [3,3'] are sterile; [1,17], [1,3] and [1', 3] are fruitful since A
is the only subdirectly irreducible in which these pairs are satisfied.

Step 5. Since we have an equational basis for each subdirectly irreducible, we can
order Si(Pgg) as follows:

E
F B
D
A
FIGURE 4

Step 6. If we include the trivial subvariety T, we have |[A(Pgp)| = 20 and the
complete description of A(Pgg) is as follows:

FIGURE 5

Comments. In order to compare our results with those of (3], we give the translation
of our g-relations on the dual space into ~-inequalities on the algebra itself. It goes
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without saying that every subvariety of Pg satisfies a = ~8 a.

(1) avVe~a=1;
(2) a< ~?a;
(3) av~la=1;
(1) aA~a < bV ~b;
(V3) aA~a < bV~3b;
(32) an~%a < ~2qa;
(33%) aA~Pa < bV~3b;
(11'2) aA~a < ~2aVbV~b;
(1V3) aA~aA~2a < bV~b;
(132) aA~a < ~2avbVv~»ib;
(332) aA~3a < ~PavbVA3h;
(11'32) aA~aA~*a < ~2aVbV~b;
(1133) aA~aA~%a < bV~DV~3h;
(11'83'2) aA~aA~2a < ~2aVbV~bV~3h.

All these ~-inequalities are basic and involve at most two variables. By Theorem 8
they are self-dual, a fact that clearly appears in (11'), (33') and (11'33') and that can
be easily proved in all cases by the following process:

apply ~? to both members of the inequality :
change a into ~% @ and b into ~°5 .

We show it for the first and last axioms of the list above.
Applying ~3 to both members of (1), we obtain

~Ban~ta =0,
Changing a into ~3a yields
aA~a =0,

that is the dual of (1).
Similarly, applying ~3 to both members of (11’33'2) we obtain

~avatava > ~Pan~PbA~TbAD .
Changing a into ~* g yields
aVe~aV~3a > ~2aAbA~DARSD,

that is the dual of (11'33'2).

The preceding considerations show that the g-relations are much more tractable than
the ~-inequalities.
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Now we compare our results with those of M. Ramalho. We first note that two
axioms of [3] involve only one variable but are not simple. These are

(@) aA~a < ~Pav~Pa

and

B) an~Pa < ~aV~a.

We shall prove that (o) = (112).
That (11'2) implies (o) is immediate: it suffices to change b into ~2 a.
That (c) implies (11'2) is more arduous. Substitute a V (~®a A~*b) for ain (a):

{av(~5a/\~4b)] A [Na/\(aVNSb)] < ~2aV(~aAb)V [~3aA(~2av~b)] .

The first member is greater than or equal to a A ~ a, whereas the second is less than
or equal to ~*aV bV ~b. Hence (11'2) is satisfied.

Some of the equational bases obtained in [3] are not correct. For instance, the algebra
dual to F is denoted in [3] by Cs3 and characterised by (11'33') and (3). But we can
show that () is not satisfied. In fact, the algebra dual to F has the following Hasse

diagram:

FIGURE 6

The operation ~ is defined as follows:

A'Oabcdefghz’jklmnpqrstuvwxyzl

NAllyzzusrvtwljpmkqndgeihfacbO

The element j does not satisfy (8) since ~j =1, ~*j = p, ~j=qgandb=jAq ¥
pVI=u
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The algebra dual to G has a diagram isomorphic to the free distributive lattice on
3 generators:

FIGURE 7

The operation ~ is defined as follows:

A!Oabcdefghijklmnpql

NAlllmkjhigfdebca gnpo

For this algebra, M. Ramalho gives four equational bases: (11'), (1'3), (13') and
(a). First, (1'3) and (13') are dual, hence equivalent. But they are not satisfied:
gA~gZpV~3psince g £ p. Second, () = (11'2) is the equational basis of BV G.
Third, (11) = () but not conversely. In conclusion, the only equational basis of the
algebra dual to G is (11').

We can also say that some equational bases of [3] are redundant. For instance, the
subvariety B V D is denoted by Ps V V(C3) and characterised by

ah~aA~3a < ~2aVbV~b,
aA~3a < bV~b, '
aA~Pa < ~2aVvbV b,

Obviously, the second ~-inequality implies the others.

4. THE SUBVARIETY Pigg

Step 1. There are in Pyg seven non-equivalent g-relations which form an antichain
when they are ordered by implication:
o -] [<] o o Q

(1 1] 31 (37 ] 5 (2

Fi1GURE 1’
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Step 2.

| [ BB Bl B[R
miy- 4 / A [/ A BS
[1'] A A B
(3l oA /A LY
31 oA ) Y]
(5] e/ 13
[5'] [1,3]
2] '

TaBLE 1/

Step 3. In Pgp there are 42 non-equivalent axioms; 21 contain the digit 2.

= () (3)% () (13)£(1'3) ;
)2 () = (15) £ (1'5) = (39

2 (35') = (135) £ (1'3'5) .

(11) = (11'3) £ (113 ;

(13) £ (1'3) 5

(15') £ (1'5) ;

(33) = (133) £ (1'33) ;
(35) £ (39) ;

(55') = (155') £ (1'55') = (355')

4 (3'55') = (1355') < (1'3'55') .
avs) £ avs) = (11'35) £ (18'5') ;
(135’)—(13 5) 3
(13'5) £ (1'35') ;

(13'5') £ (1/35) ;
33'5) L (33'5') = (133'5) £ (1'33'5) .

(2)=(12)£(1'2)= (32 )d (32)=(132) %
(52) & (52) = (152) £ (1'5'2) = (352)
= (1352) £ (1'3'5'2) .
(112) = (11'32) £ (11'3'2) ;
(132) £ (1'32) ;
(15'2) £ (1'52) ;
(33'2) = (133'2) £ (133'2) ;
(35'2) £ (3/52) ;
(55'2) = (155'2) £ (1/55'2) = (355'2)
£ (355/2) = (1355'2) < (1'3/55'2) .
(11/52) £ (11/5'2) = (1352) £ (11'8'5'2) ;
(135'2) £ (1'3'52) ;
(13'52) i( '35'2) ;
(13'5'2) £ (1'352) ;
(33'52) £ (33'5'2) = (133'52) £ (1'33'5'2) .

(1'3'2) 5
(35'2)
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(1133") ;

(11/35") £ (11'3'5) ;

(11'58') = (11'355') £ (11'3/55') ;

(133'5) £ (1'33'5) ;

4 (1355 ;
(

(13'55") £
(33'55") = (133'55') £ (1'33/55') .

(11'33'5) £ (11'33'5) .

(11'33'55") .

Most equivalences are consequences of Table 1'. For instance, the equivalence (1) =(3)
follows from (13) £ (I'3) = (13) & (I'8') = (1) = (3) since [1,1'], [1,3], [1', 3], [3,3]

are all fruitful.

Similarly, (5) = (135) is justified as follows: (135) 4 (1'8'5") = (135) & (1'3'5') = (5)
since (1,17, (1,37, [1,5, [3,3'], [3,5'] are fruitful. The implication (5) = (135) being

trivial, the proof is complete.

Figure 2’ gives the ordering of the axioms by implication. To gain in clarity we have

(11'33'2) ;

(11'35'2) £ (11'3'52) ;
(1155'2) = (11'355'2) 2 (11'8'55'2) ;
(133'5'2) £ (1'33'52) ;
(13'55'2) £ (1'3552) ;
(33'55'2) = (133'55'2) < (1'33'55'2) .

e fla |l

(11'33'52) £ (11'33'5'2) .

(133'55'2) .

suppressed the parentheses that embrace the axioms.
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In the poset of Figure 2 nine elements are meet-irreducible; they form the subset
M = {(1U33552), (11'55'2), (11'33'52), (33/55'2), (11'33'2), (11'52), (55'2), (33'52),
(1133'55')}.

All the other axioms, except (2), (5) and (52), can be expressed as conjunctions of
elements of M:

(11'35'2) = (11'55'2) & (11'33'52) ;
{ (133'5'2) = (33'55'2) & (11/33'52) ;

(13'55'2) = (11'55'2) & (33'55'2)

(13'5'2) = (33/55'2) & (11'52) ;
(13'52 11 55'2) & (33'52) ;

(135'2) = (11'35'2) & (55'2) = (11'55'2) & (11'33'52) & (55'2) ;

(15'2) = (11'52) & (55'2) ;
(35'2) (33'52) & (55'2) ;

(112) = (11'52) & (11'33'2) ;

(33/2) = (33'52) & (11'33'2) ;

(13'2) = (112) & (33'2) = (11'52) & (11'33'2) & (33'52) ;

(11'33'5) = (11'33'52) & (11'33'55") ;

(11'35) = (11'35'2) & (11'33'55) = (11'55'2) & (11'33'52) & (11'33'55') ;
(133'5) = (133'5'2) & (11'33'55') = (33'55'2) & (11'33'52) & (11'33'55/) ;
(11'33) = (11'33'2) & (11'33'55) ;
(11'55) = (11'55'2) & (11'33'55') ;
(33'55) = (33'55'2) & (11'33'55') ;
(13'55') = (13'55'2) & (11'33'55) = (11'55'2) & (33'55'2) & (11'33'55') ;
(11'5) = (11'52) & (11'33'55) ;
(33'5) = (33/52) & (11'33'55') ;

(13'5') = (13'5'2) & (11'33'55") = (33'55'2) & (11'52) & (11'33'55') ;
(135') = (135'2) & (11'33'55') = (11'35'2) & (55'2) & (11'33'55') ;
(13'5) = (13'52) & (11'33'55') = (11'55'2) & (33'52) & (11'33'55') ;

(55') = (552) & (11'33'55") ;
(1) = (11'2) & (11'33'55) = (11'52) & (11'33'2) & (11'33'55') ;
{(33')=( 3'9) & (1133'55') = (33'52) & (11'33'2) & (11'33'55') ;
(15') = (15'2) & (11'33'55') = (11'52) & (55'2) & (11'33'55") ;
{( 5) = (35'2) & (11'33'55) = (33/52) & (55'2) & (11'33'55') ;
(13') = (13'2) & (11'33'55") = (11'52) & (11'33'2) & (33'52) & (11'33'55') .

We also have (2) & (5) = (1).
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In conclusion, all the subvarieties of Pyo g can be characterised by axioms belonging
to M U{(2), (5), (52)}.

Step 4. The subvarieties of Pgp of the form P, ,, are ordered as follows:
P 10,0

FiGUurE 3/

There are 12 subdirectly irreducibles, the description of which is given in Table 2.

Step 5. The ordering of Si(P1g,) is shown in Figure 4':

FiGURE 4/

Step 6. If we include the trivial subvariety T', we have |A(P10)] = 70. The complete
description of A(Pgp) is given in Figures 5’ and 5”.

In Figure 5 every subvariety X VY V Z V ... is mentioned briefly as XY Z....
On the right-hand side the name of the subvariety is not always written but can easily
be found. Moreover, most lines from the left-hand side to the right-hand side have
been suppressed to clarify the diagram. The subdirectly irreducibles are represented
by solid circles; similarly, solid circles are used for the subvarieties B V X where X is
subdirectly irreducible.

The above remarks are also valid for Figure 5”.
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(a) | (B () (8) (e)
P | 4 TUOTEEEEIE ]
o o 01 [1] (1] (3] {3 [5] [5] [2]
B 0 1 9100 X )
Py g; 011 x
' 10 7 7 7
1 «34 01 (1] (] [3] [3'] [5] (8] [2] )
¢ I0 9110 ? 8 X 8 X 8 X i 235
_jor
600 0 o 9y % % (1 [1] (3] (3] [5] 5] [2]
Psy | D 012 3 4 23 3 4 0 X X (5)
g4 0 1 X X
7510 1
R JATEEEFE]
T0)y=10 1
517 339 )
- I I I I I - [1} (1] (3] 3] [i] 5] 2] (55)
06 2 8 4 1 X
L) = {5}
13579
1] 111 3] (37 [5] [5'] 2
o W O{X]HH[H]HH a1
0 2 4 6 8 1 X
T(0) = {1}
13579
] [11] 18] [3] [8] [5'] [2
- M . (1] 1] !X, [3 [5] [5] [2] (3%)
0 2 46 8 1 X
Pioo r'(0) = {3}
135789
o (1] (1] 3] (37 [5] [5] [2]
1 X 0] x X (13"
1 X X
(1] (1] [3] (3] [8] [5] [2]
J 0! x X (11/, 15/)
1 X X
[1] (1] [3] [3] [5] [87] [2]
K O X X (33’,35’)
1 X X
[1] (] (3] (3] [5] (8] [2]
L 0] X x x (13,15, 35')

T(0) = {1,3,5}

X X X

TABLE 2/
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