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Summary

Asteroseismology is a new domain of astrophysics whose the goal is to improve our
knowledge of stellar interiors by studying very precisely their oscillations or pulsa-
tions. In the frame of our thesis, we have implemented a precise computation tool
for asteroseismology: a code which computes the non-radial non-adiabatic oscillations
of stars. This code takes as data a stellar model at equilibrium computed by the
new Code Liégeois d’Evolution Stellaire (CLES), and determines precisely the oscilla-
tion modes of this model around its equilibrium: oscillation frequencies, growth rates,
phase-lags, ... The niain characteristics of our code are the followings:

1. It is able to study the radial as well as the non-radial oscillations of stars.

2. The transfers of heat occuring during the thermodynamical pulsation cycles are
taken into account in a full consistent way. In the usual terminology of thermo-
dynamics, such cycles are called non-adiabatic by opposition to adiabatic cycles

witlout heat exchanges.

3. In our code, special care is given to the treatment of the oscillations in the
superficial layers of the star and in its atmosphere (see Section 2.3).

The main advantages of a non-adiabatic pulsation code, in comparison with an adi-
abatic code, are the followings. On one hand, only a non-adiabatic code permits to
describe in a consistent way the damping or driving mechanisms at the origin of the
stability or instability of a star. On the other hand, the oscillations of a star are always
totally non-adiabatic in the superficial layers and, in particular, in the visible part of
a star. Therefore, the pulsation observables linked directly to the photosphere such
as the photometric amplitudes and the phase-lags can be reliably compared to the
theoretical predictions, only by using a non-adiabatic code.

The numerical method we have adopted in order to solve the problem is a finite differ-
ences method, together with a generalized inverse iteration algorithm. Moreover, our
discrete scheme of equations is such that it is intrinsically compatible with the integral
expressions for the pulsation frequencies, which makes it very stable and precise from
a numerical point of view.

Finally, we have applied our non-adiabatic code to the study of 4 types of near main
sequence variable stars: the 8 Cephei, the Slowly Pulsating B (SPB), the § Scuti and
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the v Doradus stars. We recall that the main sequence corresponds to stars in the
phase of core Hydrogen burning.

The application of our non-adiabatic code to the study of 8 Cephei stars shows very
precisely the mechanism at the origin of their instability. It is a s-mechanism associated
to the opacity bump in the partial ionization zone of Iron. Moreover, in collaboration
with the Katholieke Universiteit of Leuven (Dupret et al. 2002, De Ridder et al. 2002),
we have shown that the influence of surface temperature variations on the line: plohle
variations of Si** (456.784 nm) is very small compared to the influence of the velocity
field (Doppler effect) for a typical 8 Cephei model. Finally, we have applied our non-
adiabatic code to the study of the photometric variations (Johnson filters) of the star
16 Lacertae. In the frame of this study, we were able to identify the degree £ of the 3
pulsation frequencies. Moreover, by searching for the model giving the best fit between
theory and observations, we showed that the metallicity of this star (Z =~ 0.015) is
slightly smaller than the solar metallicity (Dupret et al. 2003a).

Concerning the Slowly Pulsating B stars, our study shows precisely the mechanism at
the origin of their instability. As for the  Cephei stars, it is a x-mechanism associated
to the opacity bump in the partial ionization zone of Iron. Secondly, we showed in
collaboration with Leuven that the influence of surface temperature variations on the
line-profile variations of Si™ (412.8054 nm) is very small compared to the influence of
the velocity field for a typical SPB model. Finally, we have applied our non-adiabatic
code to the study of the photometric variations (Geneva filters) of 11 SPBs observed
by Dr. De Cat (2001), and we could identify the degree £ of their dominant modes.

Concerning the & Scuti stars, our study shows firstly the driving mechanism of these
stars, which is associated to the opacity bump in the second partial ionization zone of
Helium. On the other hand, we have applied our non-adiabatic code to the study of
the photometric variations (Stromgren filters) of § Scuti stars. Our results (amplitude
ratios and phase-lags) are very sensitive to the characteristics of the very thin con-
vective zone situated in the partial ionization zone of Hydrogen; precise informations
on tlie characteristics of this zone can thus be obtained by confronting the theoretical
predictions to the observations.

And finally, we have studied the v Doradus stars. On one hand we showed that, under
the frozen couvection approximation, the excitation of these stars can be explained
by a blocking of the flux at the base of the thin convective envelope. However, this
mechanism is not unanimously accepted by the scientific community. On the other
hand, we have shown that the photometric amplitudes and phase-lags predicted by
our non-adiabatic code are extremely sensitive to the characteristics of the convective
envelope. However, in all the cases, these theoretical predictions were not in agreement
with observations.” We can thus conclude that the vamablhty of the - Doradus stars
remains a mystery for the theoreticians.

260



Introduction

Simple introduction

The study of variable stars has been since a very long time one of the key of our
understanding of the universe. The reason is that they give direct informations on
intrinsic characteristics of the stars. And precisely, the main challenge in astrophysics
is'to get-information about.the intrinsic characteristics of these things so far away that
we observe. This is really a difficult challenge, since the time when we will travel from
stars to stars in order to see in situ what they really are does not seem to be close ...

B

Why and how the variable stars give such intrinsic informations about themselves 7
Let’s consider the case of a periodic variable star, and admit that the observed fre-
quencies-are due to its vibrations (like the sound of a music instrument). On-one hand
theses frequencies are not affected by the distance between the observer and the star (if
we neglect the relativistic effects, which is perfectly admissible in the local universe).
On the other hand, these frequencies give direct information about the star itself (sim-
ilarly to the sound of a music instrument which gives direct information about the
instrument itself). Therefore, by determining with high precision these frequencies,
we can get direct information about the stars themselves. A great progress in our un-
derstanding of our universe was for example the determination of the distance scales.
This progress came precisely from the study of variable stars called the “Cepheids”.
Astrophysicists of the beginning of this century were able to relate the periods of these
stars to their absolute luminocsity and by comparing it to the quantity of light received
on earth, they were able to determine their distance, which was (and remains) one of
the bases of our determination of the distances in the universe.

Closer to the present times and thanks to future space missions (COROT, MOST,
Eddington) that will be launched in the following years, we will be able to observe
the stellar oscillations (or vibrations) with an extremely high precision. And since
these oscillations are directly linked to the internal characteristics of stars, we will be
able to improve significantly our knowledge of stellar interiors. I recall that stars are
opaque so that all what we see of them is their surface (called the stellar atmosphere).
This procedure is called asteroseismology in the case of stars and helioseismology for
our Sun, because of its similarity with the “classical” seismology where the earth’s
seismic waves (due to earthquakes) are studied in order to improve our knowledge of
the earth’s interior. For our Sun, helioseismology was really a great success. Thanks
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to the observations from space with SOHO and from the ground with GONG, Bi-
SON, IRIS, ...astrophysicists were able to determine with very high precision the
periods (around 5 minutes) of the extremely numerous oscillation modes of our Sun,
and therefore they were able to determine very precisely its physical characteristics,
from its center to its surface, typically: the sound speed,. the density, the rotational
velocity (solar rotation is not rigid), the chemical mixing processes, the exact depth of
the envelope convection zone, . ..

'thSIS a computer program able to compute the oscillations of stars. Taking as data
an equilibrivm stellar model, this program is able to determine very precisely, how the
star will oscillate around its equilibrium. The particularities of our program are as
follows:

The present study is exactly situated in this field. We have developed during our

1. Our program is able to study the radial oscillations (periodical spherical sym-
metrical expansions and contractions of the star) as well as the non-radial oscil-
lations (more complex oscillations without spherical symmetry, where the peri-
odical movements of the matter, the variations of the radiative flux, ...depend
on the 3 spatial coordinates inside the star).

2. Our program takes the periodical transfers of heat into account in the simulation
of the oscillations. In the thermodynamics terminology, these processes are called
non-adiabatic by opposition to adiabatic processes without heat transfers.

3. A spec1a1 care is glven 0 the simulation of the oscillations in the very superficial
layers of the stars (a region called the atmosphere).

Onr program is very useful for improving the knowledge of stellar interiors and atmo-
spheres. More precisely, its theoretical predictions (pulsation frequencies, excitation
méchanisms, photometric amplitudes and phase-lags, ...) can directly be confronted
with the observations. By adjusting the stellar parameters (mass, chemical composi-
tion and mixing processes, convection parameters, age, . . . of the stellar model), we can
then determine the model giving the best agreement between theory and observations.

In Figure 1. we give an illustration of the well known Hertzsprung-Russel (HR) diagram.
All the stars can be situated in this diagram. The abscissa corresponds to the logarithm
of the effective temperature (see the definition in Section 1.3.2, Eq. (1.16)), which is
directly linked to the colour of the star (the left part of the diagram corresponds to
hot blue stars and the right part to cold red stars); and the ordinate corresponds
to the logarithm of the absolute luminosity of the star (quantity of light emitted by
the star) in units of solar luminosity. In Figure 1, we give the position of different
classes of pulsating variable stars in the HR diagram. As a quick recall about stellar
evolution, during the longest part of their life, the stars are burning hydrogen in their
core and transform it into helium. The position: of these stars in the HR diagram
has the remarkable property of being situated along a line called the main sequence
coing from the top left (high masses) to the bottom right (low masses) of this diagram
{(dashed line in Figure 1).
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All the stars that we will study in the present work are close to the main sequence and
thus in, or close to, the phase of core hydrogen burning. They are also of population
I, which corresponds to the second generation of metal rich stars situated in the disk
of our galaxy, by opposition to the population II stars, which are the very old first
generation of metal poor stars situated in the halo of our galaxy and in the globular
clusters gravitating around the galaxy. More precisely, the different kinds of stars that
we will study are:

1. The § Cephei stars (8 Cep). These are massive blue stars with masses from
7 M to 20 Mg (Mg is the mass of our Sun) and typical pulsation periods from
3 to 8 hours, corresponding to low order p-modes (as defined in Section 1.10).
They are situated in the upper left part of the HR diagram (see Figure 1). Our
study of these stars is presented in Section 4.1.

[SW)

. The Slowly Pulsating B stars (SPB). These are blue stars (colder and less
luminous than the 5 Cephel), with masses from 3 Mg to 8 Mg and with long
pulsation periods from 1 to 4 days, corresponding to high order g-modes (as
defined in Section 1.10). This a new class of pulsating stars discovered 10 years
ago by astronomers of Leuven (Waelkens 1991). Our study of these stars is

presented in Section 4.2.

3. The § Scuti stars (§ Sct). These are colder stars situated at the intersection
between the “classical” instability strip and the main sequence, with masses from
1.5 Mg, to 2.5 M and typical pulsation periods from 0.5 to 6 hours. Some §
Scuti stars are highly multi-periodic. Our study of these stars is presented in

Section 4.3.

4. The v Doradus stars {v Dor). This is a new class of pulsating stars very
recently discovered. They are a little colder than the § Scuti stars and have long
periods from 8 hours to 3 days. They remain a mystery for the astrophysicists.
Our study of these stars is presented in Section 4.4.

Besides the above stars, other well known classes of pulsating stars can be seen in
Figure 1: the classical Cepheids (Ceph) situated in the “classical” instability strip (see
above their use for the determination of the distances), the Mira stars which are red
giants called from their prototype Mira (the Wonderfull) discovered as a variable star
in 1596, ...

Asteroseismology

The goal of asteroseismology is to measure with very high precisions the periodical
variations of pulsating stars and to use these informations in order to improve our
knowledge of stellar interiors. Asteroseismology is thus a tool to test stellar evolution
theory and in particular the basics of stellar hydrodynamics. Its name comes from
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Figure 1. A Hertzsprung-Russell diagram showing the zero-age main sequence
(dashed) and the position of several classes of pulsating stars. The continuous curves
are evolution tracks for stars with masses 1,2,3.4,7.12 and 20 M.,. Figure taken from
Christensen-Dalsgaard & Dziembowski (1998). '
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its similitude with the “classical” seismology whose the goal is to study the seismic
waves (due to earthquakes) in order to improve our knowledge of the Earth’s interior.
More precisely, the study of stellar pulsations offers an unique opportunity to probe
the stellar interiors, because the pulsation frequencies of a star are directly linked to its
internal characteristics (IAU Colloquium 185, Radial and nonradial pulsations as probes
of stellar physics, 2001, Leuven; Porto Conference, Asteroseismology Across the HR
Diagram, 2002, Porto). This procedure has already been applied with a great success
for the Sun by helioseismology (SOHO 10/GONG 2000 Workshop, Helio- and Astero-
seismology at the Dawn of the Millenium, Tenerife, Spain), permitting to determine
with high precision the differential rotation, the sound speed and the density from the
center to the surface of the Sun, the position and the characteristics of the frontier
between the radiative and the convective zone (the tachocline), the influence of the
magnetism, the mixing and diffusion processes, ... In close future, we expect to be able
to fulfil the goals of asteroseismology with a success comparable to the one obtained
for the Sun, for the following reasons.

On one hand, precise periods for different kinds of multiperiodically pulsating stars have
been recently detected from the ground, on the base of photometric data, for example
for & Scuti stars (e.g. Breger et al. 1998, 1999, 2002}, or on the base of spectroscopic
data, for example for the solar-like oscillations of o Centauri A (Bouchy & Carrier 2001,
2002). The observation and analysis of line-profile variations for variable stars is also
in great development. In those observations, a precise trace of non-radial oscillations
is now clearly admitted.

On the other hand, space missions dedicated to asteroseismology will be launched in
the following years, which will give observational data of extremely high precision to
the astrophysicists. The great advantages of these space missions compared to ground
based observations are as follows.

1. The oscillations in stars similar the Sun produce very small fluctuations in bright-
ness. The Earth’s atmosphere interferes with light, a phenomenon called scin-
tillation. This source of variations can easily drown out the signal that we are
looking for. From space, there is no longer atmosphere between the instruments
and the stars, which gives observations of incomparably better quality.

2. Another problem from the ground is of course that we can only observe the night,
when the weather is good ... This is a great handicap when we want to study
stellar oscillations, particularly for stars with pulsation periods of the order of 1
day. From space on the contrary, it is possible to observe during very long runs
and without interruption, leading to a very low noise level compared to the signal
(see below the specifications of the COROT space mission)}.

These two advantages are so significant that even with a very small 30 cm space tele-
scope, one can do easily what is almost impossible with a 8 meter telescope on Earth.
These different future space missions are, in order of launch:
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e MOST (Microvariability and Oscillations in STars). MOST, sometimes called the

“humble space telescope” is a Canadian space mission. With a collecting mirror
only 15 cm across and a total size of 65 x 65 x 30 cm, MOST is a very small
space telescope. However, it will be able to observe stellar oscillations with much
better precision than from the ground. The three main goals of MOST are the
detection and characterisation of

1. the oscillations of solar-like stars, including very old stars (metal-poor sub-
dwarfs) and magnetic stars (roAp), in order to probe their structures;

2. the reflected light from giant exoplanets closely orbiting solar-like stars;

3. the turbulent variations in massive evolved (Wolf-Rayet) stars.

The launch of MOST is expected for April 2003 with a life time estimated to 3
years.

COROT (COnvection ROtation and planetary Transits). COROT is a french-
european space mission. With a 27 cm telescope and 4 CCDs separated in 2
flelds of view: the SISMO field and the EXO field, COROT will be able to fulfil
at the same time its two main goals:

1. In the SISMO field, the detection and study of stellar oscillations with very
high precision. For the central program, at least 5 runs of observations of
150 days with a duty cycle of 80 % are planned during which one bright star
(the main target) and several fainter ones in the surrounding field of view
will be followed. COROT will be able to observe stellar oscillations with a
noise level down to 2.5 ppm for A anf F type stars (§ Scuti) and 0.6 ppm
for G type stars (solar-like). With these specifications, the observations of
COROT will be incomparably more precise than all what is possible from
the ground.

8D

In the EXO field, the search for extrasolar planets and in particular teliuric
ones. Because of its very high precision photometry, COROT will be able to
detect the small occultation due to the transit of planets before the observed
stars, which will allows to precisely determine their orbital periods and sizes.

COROT will be launched in 2005 and is expected to be operative for at least 2.5
years

And last but not least Eddington. Eddington is a very recently accepted space
mission of ESA. Its project is globally the same as the previous missions, but
much more ambitious. The satellite will travel beyond the Moon to the second
Lagrangian point, where it will perform its five-years mission. During the first
two years, it will measure the oscillations of approximately 50 000 stars, with
such a high precision that it could perform for the first time a seismic study of
solar-like stars in open clusters. During the next three years, Eddington will be
looking at one single star-rich field, searching for planetary transits in a survey of
approximately 500 000 stars, with a precision permitting to detect planets down
to the size of Mars (i.e. about one-third the size of the Farth !).



Non-adiabatic oscillations

In order to fulfil the goal of astercseismology, a precise confrontation between theory
and observation has to be performed. The works presented in this thesis concern
the theoretical part of this aim. More precisely, we have written a linear non-radial
non-adiabatic code and applied it to the study of different kinds of pulsating stars.
This code takes as data a stellar model at thermal and hydrostatic equilibrium and
determines precisely the characteristics of the proper modes of oscillation with respect
to the equilibrium configuration. “Non-adiabatic” means that, in our modelling, the
periodic transfers of heat due to the pulsation are taken into account in a full consistent
way. The main advantages of a non-adiabatic code, compared o an adiabatic code,
are as follows:

1. It is able to determine accurately the stability or instability of the different modes
of a stellar model. Our code computes in a consistent way the growth rates of
the different modes (positive for the unstable modes and negative for the stable
modes). Moreover. it is able to localize precisely in the star the regions which
have a driving effect on the oscillations and the regions which have a damping
effect. which is very useful for the analysis of the mechanisms at the origin of the
instability of pulsating stars.

2. It computes very precisely the amplitudes of variation (for a given normalization
since we work in the linear approximation) and the phases of the different phys-
ical quantities (temperature, pressure, luminosity, displacement field, ...), from
the center to the surface of the star. In particular, our code computes the am-
plitudes (for a given normalization) and phases of the local effective temperature
variations at the photosphere. On one hand, from a spectroscopic point of view.
this permits to determine the influence of temperature variations on line profile
variations. On the other hand, from a photometric point of view, this permits to
determine the theoretical photometric amplitude ratios and phase-lags and, by
confronting them to the observations, to identify the modes and constrain the
models. We emphasize that the oscillations are always highly non-adiabatic in
the superficial layers, so that the adiabatic approximation is totally inappropriate
for the determination of the amplitudes and phase-lags at the photosphere.

The main specificity of our non-adiabatic code, compared to the one of other authors
(Dziembowski 1977a. Pesnell 1990). is that it includes a detailed treatment of the
pulsation in the outer atmosphere (see Section 2.3 and Dupret et al. 2002).

By confronting the theoretical predictions of our non-adiabatic code obtained for dif-
ferents models and for different modes of oscillation to the observations, it is possible
to determine the modes and models which best fit the observations and by the way to
improve our knowledge of stellar interiors and our understanding of stellar pulsations.
In this sence, our code is a direct tool for asteroseismology.

267



Mode identification

In a non-radially pulsating star, and when the pulsation-rotation interaction is small,
the dependence with respect to the spherical coordinates § and ¢ of the amplitudes
of variation of the different physical quantities are, for a given mode, represented by
a spherical harmonic Y/"(8, ¢). We denote here by mode identification, the problem
of determining from the observations the spherical degree £ and the azimuthal order
m of the different pulsation modes. This is a crucial problem in Asteroseismology for
the following reasons. Firstly, from a theoretical point of view, despite the linear non-
adiabatic predictions, the mode selection mechanisms are not well understood for many
kinds of pulsating stars (6 Scuti, § Cephei, Slowly Pulsating B stars, v Doradus, roAp
stars, ... ). Secondly, from an observational point of view, the mode identification is far
from trivial, simply because we do not resolve the disks of stars (except for the Sun or
by interferometry). Thirdly, the rotational splittings and the “avoided crossing” effect
produce such a mess in the power spectrum that a mode identification based on the
pulsation frequencies alone is generally impossible {except for solar-like oscillations in
the asymptotic regime)}. At the present, two kinds of mode identification methods have
been developed. These two methods are based on photospheric observables, where the
pulsation is totally non-adiabatic, so that our non-adiabatic code is very useful in this
frame.

Line-profile variations

The first kind of methods is based on the study of line-profile variations (see e.g.
Aerts 1996, Telting & Schrijvers 1997, Townsend 1997). The principle is to make
spectroscopic observations of the line-profile variations of one or several spectral lines
of a pulsating star and compare them to the theoretical predictions. These line-profile
variations come mainly from the velocity field associated to the pulsation. At a given
time, some parts of the disk are going towards the observer and the Doppler effect
implies a blue shift of the line and at the same time, other parts of the disk are going
outwards from the observer with a red shift of the line, and the total resultant is a
line-profile variation. Siuce the (8, ¢) dependence of the velocity field is given by
the spherical harmonics Y;™(0. ¢), the confrontation between theory and observations
permits to determine £ and m. A part of the work presented in this thesis is to study the
influence of non-adiabatic temperature variations on line-profile variations of 8 Cephei
and Slowly Pulsating B stars (SPBs). This work has been done in collaboration with
Dr. De Ridder and Prof. Aerts of the Katholieke Universiteit Leuven.

Multi-colour photometry and non-adiabatic asteroseismology

The second kind of methods is based on multi-colour photometry. The principle is to
observe the photometric variations due to stellar oscillations in different colour filters
and compare them to the theoretical predictions (Dziembowski 1977b, Stamford &
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Watson 1981, Watson 1988, Garrido et al. 1990, Garrido 2000). The theoretical am-
plitude ratios and phase differences between different filters depend explicitly on the
degree £ (but not on the azimuthal order m), so that £ can be determined by searching
for the best fit with the observations. In these methods, the theoretical predictions
are very sensitive to the non-adiabatic temperature variations at the photosphere so
that, by using our non-adiabatic code, their discriminant power is significantly im-
proved. The non-adiabatic predictions (amplitudes and phases) are very sensitive to
some dominant parameters of the theoretical models. Therefore, once the modes are
identifled, we can search by an iterative process for the model which best fits the ob-
servations; we call this method non-adiabatic asteroseismology. On one hand, with this
method, we can derive strong constraints on the metallicity of § Cephei and SPB stars,
as will be shown in Section 4.1.6 for the 8 Cephei star 16 Lacertae. On the other hand,
the characteristics of the thin superficial convection zone can be constrained for ¢ Scuti
and v Doradus stars.
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Some theoretical aspects of stellar
pulsations

The goal of this chapter is to give an overview of the theoretical background at the
basis of the works presented in this thesis. As a simple introduction to the physics
inside the stars, we present in Section 1.1 the typical time scales associated to them.
In Section 1.2, we present the general equations of hydrodynamic with the usual hy-
potheses made for stars (ideal fluid, Newton theory of gravitation, magnetic field ne-
glected, ...). In Section 1.3, we give the main differential equations of equilibrium
spherically symmetric stellar models (rotation neglected). Next, in Section 1.4, we in-
troduce the method of small perturbations and the linear approximation, widely used
to model stellar oscillations of small amplitudes. This method is used in Section 1.5
to derive the general equations of linear non-radial non-adiabatic stellar oscillations.
In Section 1.5.2, it is explained how this system of equations can be separated, each
general solution being decomposed as an infinite linear combination of propre modes of
oscillation proportional to spherical harmonics. The perturbed equations of state used
to close the problem are presented in Section 1.6. An overview of the usual boundary
conditions is presented in Section 1.7. We note however that some of these boundary
conditions are very approximate and significant improvements are proposed by us in
chapter 2. In Section 1.8, we derive the integral expressions for the eigenvalues. These
integral expressions are very important in asteroseismology: they are at the basis of the
inversion methods and of the interpretation of the exciting and damping mechanisms
in pulsating stars. In Section 1.9, some widely adopted approximations are presented:
the adiabatic approximation, the quasi-adiabatic approximation and the Cowling ap-
proximation. And finally, the well known two kinds of pulsation modes: the pressure
modes (p-modes) and the gravity modes (g-modes) are presented in Section 1.10.

1.1 Time scales

The physical phenomena affecting stars happen at very different time scales. Examining
and comparing them is a good introduction for understanding the physics inside stars
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and the main approximations adequate to model them.

The dynamical time of a star is the time scale associated to the dynamical phenom-
ena happening inside it. It is of the order of the star’s free fall time and is defined
by:

e — 4 _R?)_QL (1‘1\

e NVemM T G R
where R, M and 7 are the radius, the mass and the mean density of the star and G is
the constant of gravitation. Stellar pulsation is a typical dynamical phenomenon. For
the simple case of the fundamental radial mode of oscillation, the stellar gas periodically
expands and compress itself with a period of the order of the dynamical time. Being
directly linked to the mean density (Eq. (1.1)), the dynamical time takes very different
values for different kinds of stars. For example, Tqyn = 0.12 ms for a neutron star,
Tayn == 3.9 s for a white dwarf, 74y, = 54 min for the Sun and 14y, ~ 3.9 years for a red
super giant. Because of this wide range of times, the constant of pulsation @ in days
has been introduced. For a pulsating star with period P, @ is defined as:

M
Q= plime _p /__ \/” (1.2)
Td\n \/

where the subscript © denotes solar values. The advantage of @ is that it is approxi-
mately-the same for the fundamental radial mode of different kinds of pulsating stars.
For example, @) ~ 0.033 days and @ =~ 0.034 days for the fundamental radial modes of
d Scuti‘and 8 Cephel stars, respectively.

The Kelvin-Helmoltz time and the thermal relaxation time are time scales associated
to the transfer of energy throughout the star.

The Kelvin-Helmoltz time is defined as:

GM*
Tk = ——=, 1.3
HE LR ( )
where L is the luminosity of the star. It is of the order of the global cooling time of
the star if the nuclear energy source was cut off. For the Sun, a4, ~ 3.1 x 107 years.

The thermal relaxation time is a time scale defined at each layer of the star:

Ten i :/ Tey,dm /L, (1.4)
Amy

where Am; is the mass between the layer ¢ and the surface of the star, T is the
temperature and ¢, is the specific heat at constant volume. It is also of the order of the
stellar cooling time, but as function of the depth. We note that some authors (Unno
et al. 1989, Pamyatnykh 1999) define it with ¢, instead of ¢,. In Figures 4.4, 4.23 and
4.41, we give at the bottom the logarithm of the thermal relaxation time (in seconds)
as function of the logarithm of temperature, fvom the center (left) to the surface (right)
of a 8 Cephei model, a Slowly Pulsating B model and a é Scuti model. By comparison,
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the dynamical time of these stars is of the order of some hours. We see that in the
internal layers, the thermal relaxation time is much larger than the dynamical time.
But it is the contrary in the superficial layers. The region where these two times are
of the same order is called the transition region. The impact of this large variation of
Ten/Tayn ON the physics of stellar pulsations is very important, as it will be discussed in
detail in the following sections and chapters.

The nuclear time is associated to the nuclear reactions inside the star. During their
life on the main sequence, stars are burning the hydrogen of their central regions. The
nuclear time is defined as the time necessary for the star to burn 10 % of its hydrogen,
with a given luminosity. The nuclear time of the Sun is of the order of 9.8 x 10° years.
We gee that the nuclear time is much larger than the dynamical time and the Kelvin-

Helmoltz time.

1.2 General equations of hydrodynamic

Stars can be considered as continuous media and except extreme cases such as neutron
stars, the classical Newton theory of gravitation is applying. There are two kinds of
description of the hydrodynamic of a continuous medium: the Lagrangian description
and the Hulerian description.

In the Lagrangian description, a continuous label @ is assigned to each infinitesimal
mass element of the medium, and the local physical characteristics are described as
function of @ and of the time ¢: the position 7(d, t), the density p(@, t), the temperature
T(d,t) ... In all this thesis, the partial derivative with respect to time of a quantity X
in & Lagrangian description will be denoted by dX/d¢. It is the time derivative of X,
following the movement of a given mass element.

In the Eulerian description, the local physical characteristics are described as function
of the position 7 and the time t: ¥(F,t), p(7,¢) ... The partial derivative with respect
to time of a quantity X in an Eulerian description will be denoted by 0X/9¢t. It is the
time derivative of X, at a given fixed position in the space.

We give now the different equations of stellar hydrodynamic.

The equation of mass conservation reads:

dp _  Op .

- = = A pt) = 1.5
g TPV =+ V- (p0) =0, (1.5)
where ¥ and p are the local velocity and density.

In stellar pulsations, the Reynolds number is very high, so that the viscosity can be
neglected. We neglect also the Lorentz force due to the magnetic field.

The equation of momentum conservation reads then:
av  ov VP

= 7 VT = —Vip — 1.6
7 at—i—v Vo A% o (1.6)
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where P is the total pressure {gas pressure + radiative pressure + turbulent pressure)
and 9 is the gravitational potential.

The Poisson equation reads:
Ay = 4nGp. (1.7)

T— =e——— (1.8)
dt o

where T is the temperature, S is the entropy, € is the rate of energy generation (mainly
by nuclear reactions) and F is the flux of energy.

In stellar interiors, there are mainly two mecanisms of energy transfer: by radiation
and by convection, so whe have F= F; + F’c, where fR is the radiative flux and ﬁc is
the convective flux. From the center of a star to the base of its atmosphere, the mean
free path of a photon is very small and the the radiative transfer is described in very
good approximation by

the diffusion equation:

3 B
Fo=-teclgp (1.9)
3kp

where. x is Rosseland mean opacity. We do not detail here the equations of transfer
by convection.. The treatment of the convection zones is one of the main source of
uncertainties in the theory of stellar evolution and stellar pulsation. The mixing length
theory is generally applied since it introduces a small number of unknown parameters.
For the massive stars studied in the frame of this thesis, only central convection zones
are present. In a central convection zone, the temperature gradient is given in very
good approximation by the adiabatic gradient:

dInT olnT
dlnP 9P|y’ (1.10)

Different algebraic equations have to be added to close the problem. The equations of
state relate the different thermodynamic variables. Choosing p and T as independent
variables,

the equations of state needed in the present study are:
P = P(p/T‘Xl) ’ S:S(p~TaX1) and ﬁ:K‘(,O?T’Xi)7 (111>

where x; represents the chemical composition.
Nuclear physics permits to determine e(p, T, x;)-

Finally, different boundary conditions have to be imposed. For stars, boundaries con-
ditions are imposed at the surface. The rigorous determination of these boundary
conditions is far from trivial. The way to proceed is generally to split the stellar model
into two parts:
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The interior where the medium is optically thick and the diffusion approximation is
valid. This part corresponds to the quasi-totality of the star in term of mass.

The atmosphere where the medium is optically thin and the diffusion approximation
is not valid. This is the visible part of the star.

In stellar evolution codes, the equations are generally solved in the interior model
alone and the surface boundary conditions impose a good linking with precomputed
atmosphere models.

Besides the surface boundary conditions, central boundary conditions have to be im-
posed in order to have regularity of the different physical quantities at the center.

1.3 Equilibrium models

1.3.1 Interior

Dwing the main part of its life, the characteristic time of stellar evolution is the
nuclear time. We have seen in Section 1.1 that the nuclear time of a star is much larger
than its dynamical time and its Kelvin-Helmoltz time. Therefore, in the study of stellar
evolution, it can be assumed in a very good approximation that, at each given time, it is
in hydrostatic equilibrium. And, except at some specific evolution stages during which
the gravitational contraction is significant, it can be assumed in good approximation
that, at each time, it is in energy balance. For slowly rotating stars (like the Sun),
the influence of rotation on the equilibiium models is very small; therefore it can be
assumed that these models have a spherical symmetry and the centrifugal and Coriolis
forces are neglected. Under these hypotheses the equations are much simplified.

The equation of hydrostatic equilibrium:

% = ~GZ7;‘). (1.12)
The mass of a shell: im i
I =dnrp. (1.13)
The equation of energy conservation:
%ﬁ— = 4rrpe . (1.14)
The diffusion equation (in a radiative zone):
ar 3kpLy (1.15)

dr ~ 16mr2acT?’
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The central boundary conditions are simply L(0) = 0 and m{0) = 0, and the surface
boundary conditions come from adequate linking with atmosphere models. In all what
follows, we call an equilibrium model or an equilibrium configuration, a model which-is
solution of these equations in the interior of the star.

1.3.2 Atmosphere

The particularity of our treatment is that our equilibrium models include the stellar at-
mosphere also. More precisely, the domain of integration is [0, Rs] where 0 corresponds
to the center and R, is the radius of the last layer of the stellar model. We emphasize
that R, is not what is usually denoted as the radius R of the star. The usual definition
of the stellar radius R is the radius of the layer where L = 47 R*¢ T* (L is the total
luminosity of the star and T is the local temperature at this layer). This layer is called
the photosphere, and the value of the temperature at this specific layer is called the
effective temperature (T.g), so that:

L=drRcTg*. (1.16)

From the Stefan’s law, we see that the effective temperature is the temperature of a
spherical black body having the same radius R and luminosity L as the star. In good
approximation. the medium is optically thick beneath the photosphere and optically
thin above it, so that the radius R is in very good approximation the visual radius of the
star. The problem is that stars have not one intrinsic surface boundary. There is not
a “last layer” after which the density is exactly zero, but at the outermost layers of the
atmosphere, a wind is appearing progressively. The models used in our computations
include the atmosphere up to very small optical depths, so that the last layer is at a
distance Rg from the center larger than K.

We note that in the atmosphere, the diffusion equation is no longer valid, and the
rigorous way to proceed is to solve the radiative transfer equation which depends on
the wavelength. Some approximations are frequently made in the computation of
atmosphere models:

1. The hypothesis of Local Thermodynamic Equilibrium (LTE). It is as-
sumed that the collision processes still dominate the state of the material, which
can be calculated from the equations of statistical mechanics evaluated at local
values of the temperature and density: Maxwellian velocity distribution, Source
function given by the Planck law (S, = B,(T")). equilibrium between ionization
stages given by the Saha-Boltzmann formula ... ).

2. The plane parallel approximation. For most of the stars such as near main
sequence stars, the thickness of the atmosphere is very small compared to the
radius of the star. In the plane parallel approximation, the atmosphere is ap-
proximated as a stratification of parallel planes and the radiative flux and the
gravity are assumed to be constant and perpendicular to the planes.
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For more details about the computation and the study of stellar atmospheres, we
propose the following references (Kurucz 1970, Mihalas 1978, Gray 1992, Mihalas &
Weibel-Mihalas 1999).

1.4 The method of small perturbations

In a pulsating star, the positions and the physical characteristics (density, tempera-
ture ... ) of each mass elements are periodically varying with time scales “of the order”
of the dynamical time (Eq. 1.1). Therefore, at each given time, the star is not at
equilibrium and most of the equations presented in Section 1.3 are not valid. In fact.
the star is oscillating around its equilibrium configuration. Formally, there are two
ways for describing this oscillation: by use of Lagrangian perturbations and/or by use
of Eulerian perturbations. Let’s X be a given physical quantity, X, its equilibrium
value, @ a label associated to a given mass element and 7 a given position in the space.

The Lagrangian perturbation of X is defined by:
0X(a,t) = X(4,t) — Xo(a) . (11n

It represents the variation of X, following the movement of the mass element labeled
by @ In all our study, we are going to use the notation * § > for the Lagrangian
perturbation.

The Eulerian perturbation of X is defined by:
X'(78) = X (7, 1) — Xo(7) . (1.18)

It represents the variation of X, at a given fixed position 7 in the space. In all our
study, we are going to use the notation *’ * for the Eulerian perturbation.

In most of the cases, the amplitudes of variation of each physical quantities are small
compared to their equilibrium values, and Taylor developments limited to the first
order around the equilibrium configuration can be made in good approximation. This
is the linear approximation.

The linear approximation consists in neglecting, in all the equations modelling
the oscillation, the second order terms and the higher order terms in the perturbed
variables. In the linear approximation, the Lagrangian perturbation and the Eulerian
perturbation of a scalar X are related by the following law:

§X = X'+ VXy- 57, (1.19)

Throughout all the study presented here we are going to work in the linear
approximation.

“Perturbing” an equation means taking the Lagrangian or Bulerian perturbation of both
sides of an equation. In order to simplify the notations, we will omit the subscript 0
for equilibrium quantities in what follows.
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1.5 Equations of linear non-radial non-adiabatic os-
cillations

1.5.1 General linear equations

Under the linear approximation, the equations presented in sect. 1.2 are simplified.

Perturbing Eq. (1.5) and integrating with respect to time gives the linear equation of

mass conservation: N -
O+ (por)=6p+pV-6r=0. (1.20)

In this study, we neglect the influence of rotation on the equilibrium model and on the
oscillations, more precisely the centrifugal force and the Coriolis forces are neglected
and the equilibrium value of the velocity is assumed to be zero. Under these hypotheses,
perturbing Eq. (1.6) gives the linear equation of momentum conservation:

5 _ VP’
o= P 1.21
o=~ + v ; (1.21)

Perturbing Eq. (1.7) gives the linear perturbed Poisson equation:
Ay = dnGyp' . (1.22)

Perturbing Eq. (1.8) gives the linear equation of energy conservation:

7 .—$/
r35 (2 5ivs ﬂv oY r (1.23)
dt 6t 0? o

And finally, perturbing Eq.  {1.9) gives the perturbed diffusion equation:

= T & P\ = 4dacT?
3kp

VT (1.24)

All the partial differential equations we have obtained are linear with coefficients in-
dependent of the time. A solution of these equations can be expressed as an infinite
linear combination of solutions with a time dependence of the form exp(i oxt):

. +oo . \
X' (7.t) = %{EAkYZ(F) e“’"tj , (1.25)
k=0

where Ay, X_Z(f) and oy, are complex and R{Y'} denotes the real part of Y.

For a given solution with a time dependance proportional to exp(iot), the equations
of momentum and energy conservation are simplified.
The equation of momentum conservation (Eq. (1.21)) becomes:

VP

o5 = Vi — £ VP + (1.26)
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And the equation of energy conservation (Eq. (1.23)) becomes:

, N
iO‘T(SSZCI—Fﬁ‘V'?—v -
P? P

(1.27)

Together with boundary conditions that we are going to detail later, the system of
equations has now the form of an eigenvalue problem whose the different perturbed
quantitities are the eigenfunctions and o is the eigenvalue (both are complex).

We are going now to do some manipulations of the equations which simplify the prob-

lem even more. We work in a spherical coordinate system (r, 8, ¢) with a canonical

orthogonal base (27,7 ,2;) defined at each point. We use the following notation for
o] \ [} g

. . =
the coordinates of the displacement vector §r:
- 5
or =88 +8E + &g, (1.28)

Vi TV is the angular part of the divergence of V.

— 1 0, . 1 0V,
V= ———(sind %) —_ 1.29
Vi rsind 0 (sin6Vp) + rsing O¢ (1.29)
aud £? is the Legendre operator:
2 10 (. ) 1 o -
= {sinf— | - ————. 1.30
sinf 00 ksm 09} sin’g O¢? 11-90)

Since the equilibrium configuration has a spherical symmetry, the 3 components of the
equation of momentum conservation arve, from Eq. (1.26):

ote, = aa—ljl + % Gr';” + %%]]1 (1.31)
0%ty = %5% <w'+%’> . (1.32)
g, = ﬁ% <¢+%) 4 (1.33)
From Eqg. {1.20), we obtain for the equation of mass conservation:
dp-+p 7—15—0?; (7"2&) + ﬁge— (sind &) + " sin@%%} =0, (1.34)

which gives, using the values of & and &, given by Eqs. (1.32) and (1.33) and the
definition of £? (Eq. (1.30)):

2y 10 (agy o L o <¢' + 5) =0. (1.35)

o T2Or o272 p
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From Eq. {1.22), we find for the perturbed Poisson equation:
1 5 287,1)/ 1 210 v !

And finally, we make some manipulations of the equation of energy conservation and
the transfer equation. We introduce the following notations:

§L = §(4rr*F,) , 6Ly = 6(4nr®Fp,) and 6L = d(4nrFe,)

where F,, Fr, and Fg, are the radial components of the total flux, the radiative flux
and the convective flux respectively. ¢L is not the Lagrangian variation of the total
luminosity, which is a quantity integrated over a sphere. 6L is a local guantity related
to the local flux by the above definition. For the sake of simplicity, we make here a
frozen convection approximation.

‘We ignore the Lagrangian variation of the convective luminosity: 6L, = 0
and we ignore the Lagrangian variation of the transversal components of
the convective flux.

We note that there are different other ways to freeze the convection: ignore the La-
grangian variation of the convective flux, ignore the variations of the divergence of the
convective flux ...

From Eq. (1.27), we have:

i e 6 . 1 0(4nr2F, L F
(e TsS = E+_p . éﬁ+6(llllp ¢ — i (dnr’F) Y
€ P dr dr dwrip or o
(1.37)
After some algebra, we find on one hand:
1 8(4nr?F 1 94L de dlnp e O(r3)

_ = — P — —_— y T = — . 1.38
drrip or dmrip Or * dr te dr ¢ 2 Or ( )

and on the other hand, neglecting the Lagrangian variation of the transversal compo-
nents of the convective flux, we have :

Vo B VR VR
2 p P
31
V- F F

which gives. using Eqs. (1.24), (1.32), (1.33) and {1.15):

i

= dacT? . P’
_vf F — a'cr) QE_TI - FSC()’CQ <w/+_>
o 3K pPr pric? p
1 Le ey Lo P
2T~ L2y + — . 1.40
drprs <7’ (dT/dr) “ r20? <’¢J p >> 40
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And finally, we find for the equation of energy conservation:

1 86L %€,
4 +6(§+§£+}_§_(Lf_l>

~4T{'T2p or € p 2 Or

1 ., 6T I Le (., P
o (1 (- 7) ~ s (v45)) - oo

From Eq. (1.24) and neglecting the Lagrangian variation of the convective luminosity,
we find for the radial component of the perturbed transfer equation in a Lagrangian
formalism:

6L Ladle L ( I3 5k Sp  O8T/or agr>

== = 93" gL _or_ 9P
I~ 11I. T +3T x T T ara e

icTéS

(1.42)

1.5.2  Splitting in spheroidal modes

We can now introduce the notion of spherical harmonic:

The spherical harmonics (Y;7(6, ¢), £ =0 — +co, m = —£ - £) are a well known. in-
finite family of functions defined on the sphere. Two important properties of the
spherical harmonics are that they form a complete set of orthogonal functions on the
sphere and that they are eigenfunctions of the Legendre operator £2:

LEY8,8) = L+ LYY™(8, ¢) . {1.43)
After the transformations we did on the equations, we can see that in all the equa-
tions where there are partial derivatives with respect to the angular coordinates (8, ¢)
(Eqgs. {1.35), {1.36) and (1.41)), these derivatives appear under the Legendre operator
L2, This together with the two properties of the spherical harmonics we have seen
implies that any general solution of the equations can be written as an infinite linear
combination of solutions proportional to Y;™(0, ¢) and the system of partial differential
equations can be separated:

+oo H 4o '
X (r,6,4,1) = {Z Z ZAeka emyi(7) 3 zm(9a¢)ew’"”kt} - (1.44)

{=0 m=-{ k=0

A solution of the form ?(r, 0,¢,1) = )_()('r) V™6, ¢) e’ is called a spheroidal mode
of oscillation or simply a mode with spherical degree £ and azimuthal order m. And
the study of stellar pulsation is reduced to the study of the different proper modes
of oscillation of a star. We did not consider here the toroidal modes which are of no
interest when the rotation is neglected.

The real part of o is the angular frequency of the spheroidal mode and the opposite
of the imaginary part (—S(o)) is its growth rate.

If the imaginary part of o is positive, then the mode is vibrationally stable, the oscil-
lations are damped and the amplitudes of variations of the different physical quantities
decrease exponentially with time.
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If the imaginary part of o is negative, then the mode is vibrationally unstable, the
oscillations are excited and the amplitudes of variations of the different physical quan-
tities increase exponentially with time.

From Egs. (1.32) and (1.33), we see that for a given spheroidal mode of degree and
order (£, m), the displacement vector is written:

=s{[emmreaa+amn (Brove+ oA 6.08) |« |
tL sing & /1 3
(1.45)
where &, is given by:
o6 = ! (z// + ﬂ) (51,& 5P> (1.46)
r P

For a given spheroidal mode of spherical degree £, the system of partial differential
equations is separated and reduces to a more simple system of ordinary differential
equations. :

From ‘Eqgs. (1.35) and (1.43), the equation of mass conservation becomes 'in a La-
grangian formahsm: :

58«}-%5—( ) ~ At (5w+5—§> =0. (1.47)

o2r2

From Eqs. (1.36) and (1.43), we find for the perturbed Poisson equation:

Ld (L' L+1) , ‘
ity - i ' 4
r2d7’( dr) ; T2 Y=dnGo , (1.48)
And from Eqs. (1.41), (1.43) and (1.46), we find for the equation of energy conservation:
, _ 1 déL Se dp  1d(r*&)\
icTé6S = _47T7°2p——c‘i;_+6<?+_,;+7”_2- ar
28+ 1) 0T &\ &n
drprd <LR (r(dT/d'r) B 7") Le r ) (1.49)

These equations as well as the boundary conditions do not depend on m. Therefore,
for each fixed value of £, the solutions (eigenfunctions and eigenvalues) are the same
for the 2¢ 4 1 values of m: there is a (2¢ + 1)-fold degeneracy. This degeneracy is well
known in quantum physics and comes from the spherical symmetry. In the presence of
a magnetic field or rotation, the degeneracy is lifted and there is a splitting of (2£+1)
frequencies for each value of ¢ (this phenomenon is analogous to the Zeeman effect in
quantum physics).

With these simplifications, the initial 3-dimensional domain is reduced to 1 dimension.
More precisely, the domain is [0; Rs] where 0 corresponds to the center and K is the
radius of the last layer of the stellar model, we recall that Ry > R (see Section 1.3.2).
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1.6 Perturbed equations of state

The total number of perturbed variables defined in Section 1.5 is higher than the total
number of differential equations. But these perturbed variables are not independent,
the equations of state impose algebraic relations between them. More precisely, it is
quife usual to make the hypothesis of Local Thermodynamic Equilibrium (LT E) in
stellar interiors and atmospheres. Under this hypothesis, if the chemical ccmposition
(xi) and the values of two independent thermodynamic quantities are given (for exam-
ple the density p and the temperature T'), all the other thermodynamic quantities can
be determined from the equations of states (Eq. (1.11)).

In an oscillating star, it is usual to uneglect the Lagrangian variation of the chemical
composition. This approximation is perfectly valid in the main part of the star, because
the time scales of the diffusion and rotational mixing processes are much higher than the
periods of pulsations. However, in the central layers, some nuclear reactions have small
time scales and the abundance of some elements of these reactions cannot be assumed
to remain constant. The variation of the abundance of these elements plays a significant
role only for the determination of the nuclear energy generation rate variation (Je). For
the other thermodynamic quantities, we can neglect this phenomenon.

We recall the definitions of some quantities obtained as derivatives of the equations of
state:

- Ol P| L OlnT -1 ;-1 OlnT|
= w371 - l= Vaa = = = {
npis Olnp |, ry I dlnPg
dln P| Aln P ou OH |
Pr = . P= e = SF O = oA >
TS GmT|, T g, ar|, @ T ar|,
dlnk | Olnhi dlnk
o= et = s = 1.50
T olnT|, e dlpl, " T Blnp s (1.50)

where U and H are the internal energy and the enthalpy. All the previous quantities
are not independent and we have:

P, = Ty, — (Ts—1)2¢,pT /P, (1.51)
Pr = (I5—1)c,pT/P. (1.52)
Kps = Ky + (T's = 1) kr, (1.53)
¢ = ¢ [1 = (Ty— 1%, pT/(TyP)] (1.54)

By perturbing the equations of states and neglecting the Lagrangian variation of the
chemical composition, we obtain then:

5T ss s5p 68 5P
S _pn¥ o2 ad 1.55
= o+ M=) 2 CP+V‘P (1.55)
5P 5T & _ 98 ,
0K oT bp 65 bp
= kp — + K, £ = gp 22 2. 1.57
/@TT-F/-LP/) nch—f—fcpgp (1.57)
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Concerning the Lagrangian variation of the rate of nuclear energy generation (de), we
have to be more carefull for the reasons said above. The rigorous derivation of ¢ is
given in Ledoux & Walraven (1958, §66) and we do not detail it here. As a quick
summary, by perturbing the different reaction rates of the p-p chain and the CNO
cycle, we obtain a linear system of equations whose solution gives the variations of the
abundances of the elements. Then, we can derive the variations of the nuclear energy
generation rates for each reactions, and the sum gives finally de. In a synthetic form,
we can write:

de 6T

= er(o) 0

op 05
4 e, (0) — = er{o) — + €5(0) —, 1.58
T+l L = (o) 2+ auslo) (1.58)
where we note that the coefficients er and €,5 depend strongly on the angular pulsation
frequency o.

1.7 Boundary conditions

By substituting the perturbed equations of state of Section 1.6 into the equations of
linear non-radial non-adiabatic oscillations derived in Section 1.5, we obtain a system
of 6 first order differential equations with 6 unknowns. In order to close this problem.
we have to add some boundary conditions.

On one hand, the central boundary conditions are obtained by imposing the regular-
ity of the solutions at the center (finite values for the perturbed variables and their
derivatives). The derivation of these conditions is detailed in Unno et al. (1989, §18.1
p. 162). An usual way to derive them is to keep only the terms of lowest order in
the Taylor developments of the differential equations close to the center. The system
of differential equations obtained by this procedure can then be solved analytically.
Finally, the condition of regularity imposes the following asymptotic behaviour of the
perturbed variables for non-radial modes (£ > 1) and for z ~+ 0: the radial displace-
ment is proportional to 71 (€, o v¢71) and for the other perturbed variables, we have
W o v, SP/P o 7t 8S/e, o vt SLJ/L o vt ... In Section 2.2, we will propose
a dimensionless formalism appropriate for the description of the perturbed variables
close to the center and we will derive in details the central boundary conditions used
in owr method.

On the other hand, 3 boundary conditions have to be imposed at the surface of the
star. The main particularity of our non-adiabatic method is the special care given to
the treatment of the pulsation in the atmosphere and to the derivation of appropriate
surface boundary conditions. We will give the details of this improved treatment in
Section 2.3. Other authors (Dziembowski 1977a, Saio & Cox 1980, Pesnell 1990) did
not include the entire atmosphere in their non-adiabatic treatment, so that they had
to impose less accurate surface boundary conditions at the base of the atmosphere. In
order to help for the comparison, we give here the surface boundary conditions used
most frequently in the litterature.
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The surface boundary condition for the gravitational potential is obtained by imposing
a first order continuous match (i.e. continuity of ¢’ and its first derivatives) between the
inner solution of the Poisson equation and the outer solution of the Laplace equation
(Ledoux & Walraven 1958). We find after some algebra:

de’ 41
S S (1.59)
ar T

We adopt the same boundary condition in our treatment. We note that we found
very often in the litterature (Unno et al. 1989, ...) a slightly different boundary
condition for the potential, where the right-hand side of Eq. (1.59) is neglected. This
approximation is admissible because the surface density is much smaller than the mean
density of the star.

The mechanical boundary condition is generally obtained by imposing a complete re-
flection of the pressure waves at the surface. In order to obtain this condition, it is
appropriate to rewrite the radial component of the equation of momentum conservation
(Eq: (1.31)) in the following form:

o = dy/ N d(g&) N Pd(sP/P) +g (@_ﬁ) . (1.60)

dr dr p dr \p P

By assuming that P/(pgr) — 0 at the surface (Cox 1980, §17.6b) or d(6P/P)/dr = 0
at the surface (Pesnell 1990), we obtain the following mechanical boundary condition:

dy/ & 0P
0%, = %+d—(§§r—)+g<f~7§—> . (1.61)
By eliminating in this equation d¢’/dr, from Eq. (1.59), and dé,/dr, from Eq. (1.47),
we obtain an homogeneous equation without derivatives, as usually expected for a
boundary condition. Proceeding so, it is easy to see that Eq. (1.61) is equivalent to
the mechanical boundary condition of Unno et al. (1989, Eq. (24.19)). Tt can be
shown that Eq. (1.61) is valid to the first order in V~! = P/(pgr). However, it is not
valid to assume V! — 0 at the surface of massive stars such as 8 Cephei stars and
SPBs, because the radiation pressure is not negligible. We will propose in Section 2.3
(Eq. (2.46)) an improved mechanical boundary condition where the contribution of
the gas pressure is neglected at the surface, but not the contribution of the radiation
pressure. We note that for modes with very high or very low frequencies, we have no
longer a complete reflection at the surface, and energy leakage occurs throughout the
atmosphere. There are two critical frequencies o,, and o,, called cut-off frequencies
such as for o > o, (resp. o < o) the pressure waves (resp. the gravity waves) are
propagating throughout the atmosphere without reflection at all; we refer to Unno et
al. (1989, §18.1) for the description of this phenomenon in an isothermal atmosphere.

Finally, a thermal boundary condition has to be imposed. Dziembowski (1977a) and
Pesnell (1990) proposed the following condition at the photosphere:

§L £, 6T
— = 2= 4 — 1.62
L r + T ( )
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The main default of this boundary condition is that it assumes implicitly that the
Lagrangian temperature variation at the photosphere is equal to the effective temper-
ature variation. We will show in Section 2.3 that this ‘assumption is not valid and
we will propose better boundary conditions: Eqs. (2.42) and (2.48). Gabriel (1989)
proposed an accurate thermal boundary condition valid in the outermost stellar layers
where matter and radiation no longer interact but did not propose a treatment of the
pulsation between the photosphere and these very superficial layers. We will propose
such a treatment in Section 2.3.

1.8 Integral expressions for the eigenvalues

Integral expressions are associated to the eigenvalue problem of stellar oscillations and
they play a crucial role in asteroseismology. These expressions can be derived on the
hasis of the general partial differential equations of the problem (see Unno et al. 1989
or Cox 1980) but it is easier to derive them for a given spheroidal mode, as we do here.

Rewriting the radial component of the equation of momentum conservation (Eq. (1.31))
in a Lagrangian formalism gives:

dé 1dé6P 6
_ oy L1doP  op

1.63
dr  p dr p g ( )

2
o7&

Multiplying by 47r2p€, and integrating over the radius r, from the center to the surface,
we find:

2 2 2 2
(o2 | 4 ,Od = Pl F ——t+ — 4 pd . 1.64
A ‘51' T T A 61 ( Ir Ir g) T r ( )

Integrating by part the first term of Eq. (1.64), we find:

R 2. F
/ g r 47'7“ pdr = {575¢4m2p]f—/0 d—(zl’;—@(smwdr. (1.65)

The term in brackets is equal to zero if we assume that the density goes to zero at the
surface of the star, and we have:

B R d ,2_‘ R_ d
/ £, 4oy dar?pdr = —/ M S dmpdr — / & 6y EP g2 dr (1.66)
0 dr dT 0 d'f’

0

Eliminating d (r2&, )/dr by use of Eq. (1.47), we find then:
— " 5p e+l (fFr— P
/ &, EZ—(S—E drr?pdr = / op S dnripdr — (_t ) / <6¢ + —) oy dmpdr
0 dr o P g 0 P

R
/ £ op % drr?dr . (1.67)
0
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Integrating by part the second term of Eq. (1.64), we find:

rit dé o B rR d (712 f_)
,.——4777’ dr = [& 6P dnr?] — L §P 4 dr . 1.68
/0 3 dr [fl m ]0 /0 ar 7 ( )
The term in brackets is equal to zero if we assume that the Lagrangian variation of the
total pressure goes to zero at the surface of the star. Eliminating d (r?&, )/dr by use
of Eq. (1.47), we find then:

AP R T - R/, 3P
/ d —dar?dr = / L 5P 4mr? dr ﬁé_g—l—)— / (61/)—!— —> OGP 4 dr.
! o P g 0 P
(1.69)
Substituting Eqs. (1.67) and (1.69) in Eq. (1.64), and using Eq. (1.46), we have:

R
o [l + e+ v iaf) artpdr

(/ Parr?pdr + Z(g.*jl)

IUI4

1
= / dp (0@ +—£> drripdr — / & 01/)(—/—)471'1"2 dr
6 P dr

op — .
+ / d g& dmripdyr
o P

SpopP ) .
/ oL / % W drripdr
o P P 0o P

R 5 R
+ 2R {/ op g & dmripdr } - / £ 0y az_p darr? dr (1.70)
0o P 0 dr

And finally we find the following integral expression for the eigenvalue:

R5 -
(/ é—pggélﬂrpdr + 9%{/ —eg€r47r7"2pd7“}
o P

R
+ / S dnrlpdr - / €. 12 g 47rr dr }
2 o P

o2 = - L (LT
/ (ig,.|2 + e+ 1) ]fhlz) drripdr
o

o+ ———{ dwpdr
p )

Il

In Eq. (1.71), the term fOR (0 p) W' drr?pdr is veal if we assume that the density goes
to zero at the surface of the star. To show it, we use Eq. (1.48) and integrate by part:

R Bog ( dy\ o ey R
7l 2 = W dr
/0 gy d /0 dr<r dT>Gd7 € /o W1 dr

r? i RBp2 | qy)? Qe+1) (R

IS
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From the boundary condition on the gravitational potential (Eq. (1.59)) and neglecting
the density at the surface of the star, the first term of the right hand side of Eq. (1.72)
is real.

Therefore, all the terms of Eq. (1.71) are real except the term: fOR (6p/p) 6P 4mr? dr.
And the imaginary part of Eq. (1.71) reads:

6
/ \9{ pOP} dgrip dr
o 0 p_p)

2R{o}S{o} = —— : (1.73)
/ (& P+ 00 +1) 16 ) darr?p dr
0
From Egs. (1.52) and (1.56). we find then:
R 37 ,
. / & {— T(SS} (T3 — 1) dnr’pdr
3o} = 0 £ . (1.74)

2Ri7) /0 (!frf +L+1) iéhiz) 47”’2/)(1‘”

1.9 The adiabatic, quasi-adiabatic and Cowling ap-
proximations

1.9.1 The adiabatic approximation

Throughout most of the star (in term of mass). the thermal relaxation time is much
larger than the observed pulsation periods. From a physical point of view, the heat
capacity is so high that, during one pulsation cycle, the entropy of the matter has not
the time to vary significantly: 05/c, >~ 0. This leads to the adiabatic approximation.

In the adiabatic approximation, it is assumed that, throughout the entire star, the
Lagrangian variation of the entropy is zero during the oscillations:

58 =0. (1.75)

Under the adiabatic approximation, the dynamical equations (equations of momentum
and mass conservation, Poisson equation) and the thermal equations (equation of en-
ergy conservation and transfer equation) are uncoupled. The dynamical equations can
be solved alone and the problem is reduced to solving the 3 differential equations: Egs.
(1.47), (1.48) and (1.63) with for example the 3 unknowns: &., P/P and ¢’ (this sys-
tem of equations is of the fourth order since Eqgs. (1.47) and (1.63) are of the first order
and Eq. (1.48) is of the second order). From Egs. (1.56) and (1.55), the Lagrangian
variations of the pressure, temperature and density are related by the following laws
in the adiabatic approximation:
5P _ . o
P p

SE

and = (T3~ 1) f . (1.76)
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Under the adiabatic approximation, the problem to solve is an hermitian eigenvalue
problem. Therefore, the eigenfunctions solutions of the adiabatic problem are pure
real, and the eigenvalues {o) are either pure real or pure imaginary.

If the adiabatic eigenvalue of a given mode is pure real then the mode is dynamically
stable and the time dependence of the oscillations is sinusoidal.

If the adiabatic eigenvalue of a given mode is pure imaginary then the mode is dynam-
ically unstable, there is no longer oscillation at all and the distance to the equilibrium
configuration increases exponentially with time. It is typically the case at the dramatic
last step of the life of a massive star, leading to a supernova explosion. In our study
we are going to consider only dynamically stable modes.

1.9.2 The quasi-adiabatic approximation

Under the adiabatic approximation, it is not possible to determine if a mode is vi-
brationally stable or unstable (the eigenvalues are pure real). This can only be done
rigorously by full non-adiabatic computations, solving together the dynamical and ther-
mal equations presented in Section 1.5. The quasi-adiabatic approximation is a method
whose the goal is to estimate if a mode is vibrationally stable or unstable without doing

non-adiabatic computations. The procedure is the following:

1.- Adiabatic computations are performed giving the adiabatic eigenfunctions and eigen-
value of a given mode.

2. The Lagrangian variation of the luminosity is determined from Eq. (1.42) and using
the adiabatic eigenfunctions computed at step 1, de is computed similarly,

3. The imaginary part of the eigenvalue is estimated by using the integral expression
given by Bq. (1.74). More precisely, for a radial mode (the generalization for a non-
radial mode is easy), the equation of energy conservation Eq. ((1.49)) gives:

78S = (ﬂ - 56) . (1.77)
o\dm

We are now at the delicate part of the method. In the quasi-adiabatic approximation,
the right hand side of Eq. (1.77) is computed using the “adiabatic” values of L and
Se obtained at step 2. Non zero values of T§S are then obtained from Eq. (1.77), and
these values are used to compute the imaginary part of o by Eq. (1.74), we have thus

for a radial mode:
M ) ddéL

(1.78)

J 0

where ¢y is the adiabatic eigenvalue.
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This procedure is inconsistent since the adiabatic approximation made at the first two
steps is no longer made at the last step, where non zero values of T3S are obtained !
As said before, the rigorous way to obtain the imaginary part of o is to perform full
non-adiabatic computations. Generally, the quasi-adiabatic procedure can be used in
reasonably good approximation from the center to the bottom of the external driving
region of a star, where the degree of non-adiabaticity is small ( |§5/¢,] < |6P/P] ).
But on. the contrary, in the superficial layers, the oscillations are always highly non-
adiabatic and the quasi-adiabatic procedure leads to wrong values of 6L. More pre-
the surface, contrary to full non-adiabatic computations which predict, as it will be
shown and explained in the next chapters, a flat behaviour of 6L in the superficial lay-
ers. This problem is generally avoided in the quasi-adiabatic procedure by truncating
the integration in Eq. (1.78) before the highly non-adiabatic layers.

1.9.3 The Cowling + adiabatic approximation

In the Cowling approximation (Cowling 1941), the Bulerian perturbation of the gravi-
tational potential is neglected:
P =0, {1.79)

This approximation is generally admissible for modes with a large number of nodes and
in the superficial layers, where the local density is much smaller than the mean density
of the star: p < 3M/(47R*). Under the adiabatic and Cowling approximations,
the modelling of stellar oscillations is much simplified: the equations of linear stellar
oscillations reduce to one single second order differential equation, as we are going to
show.

From Eqs. (1.31), (1.76) and (1.79), we have on one hand:

dP
s + C%P/ = (*=N%pé&, (1.80)

where NV and ¢ are the Brunt-Vaisild frequency and the sound speed respectively:

PT
and & = —. (1.81)
D

i

N? =

G_m 1 dlnP  dlnp
r2 ry dr dr

On the other hand, from Egs. (1.47), (1.76) and (1.79), we have:

P LEE g 1d 2
1“_____ - =&, _—f“‘T :O 182
(1) e ppe =0 am
where L, is the Lamb frequency:
e+1)c?

(1.83)
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The following change of variables has been proposed by Gabriel & Scuflaire (1979) and
permits to simplify the problem even more:

. P’
v o= firlé ., w = fy ; with (1.84)
"1 dlnP " N?
1 = exp [ —— d'r\ and f» = ex <~ / e 1') .
h i (Jo L dr J f P Jo 9 o

With this change of variables, Egs. (1.80) and (1.82) take the following form:

f2

dw

— = (0" N? i 1.85)
T (0% —~ N¥) =7, v, (1.85)
du L r? fi

S (e Moy 1.
T (02 1> a2/, w (1.86)

This system of two differential equations is easily simplified into one second order
differential equation, either by eliminating w, which gives:

i( 1 2y dv) + (0% = N?) EE 0, (1.87)

dr \1— L{.Z/U2 rz—fl dr T2f;

or by eliminating v, which gives:

d 1 -2 dw L2 2
,—(Tﬁ7pf1$\+ i—l\’,,—frlw:(). (1.88)
rAN2—0? fo dr) \o2 ) &f

1.10 p-modes and g-modes

In stellar oscillations. we can distinguish two infinite families of modes for each £ > 0 :
the p-modes (p for pressure) and the g-modes (g for gravity). The presence of these two
families was firstly proposed by Cowling (1941), and is easily predicted in the frame of
the Cowling approximation.

On one hand, let's consider modes with high frequencies . For these modes, Lﬁ/o2
can be neglected in Eq. (1.87). With this simplification, and because f; and fy are =
0 in all the domain, Eq. {1.87) together with the appropriate boundary conditions has
the classical form of a Sturm-Liouville problem and it is mathematically demonstrated
that this problem has an infinite countable familly of solutions, with 0* — +co. These
dynamically stable modes (¢ > 0) are called pressure modes (p-modes), because the
pressure plays a dominant role in their dynamic. They have the same nature as the
acoustic waves, so that we can say that studying the stellar oscillations is, in some
ways, studying the music of the stars ...

On the other hand, let’s consider modes with low frequencies o. For these modes,
N% — o2 ~ N? in Eq. (1.88). With this simplification, Eq. (1.88) together with
the appropriate boundary conditions has again the classical form of a Sturm-Liouville
problem, with an infinite countable familly of solutions, but now with an accumulation
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point of o% at zero (¢ — 0). These modes are called gravity modes (g-modes),

because the buoyancy force (directly linked to the gravity) plays a significant role in
their dynamic. When the stellar model is purely radiative in some regions (N? > 0) and
convective in other regions (N? < 0), the g-modes are subdivided into two families:
the g% modes which are dynamically stable {¢? > 0) and the ¢~ modes which are
dynamically unstable (6% < 0). The latter describe the instability of the model with
respect to the convection: We note that L, = 0 for the radial modes, so that they have
only p-modes.

Finally, for £ > 1, there is one additional mode with frequency intermediate between
the ones of p-modes and g-modes. This mode is called f-mode (f for fundamental)
and has the particularity to be the alone mode which subsists in the incompressible
homogeneous sphere.

An important characteristic of the eigenfunctions of p-modes and g-modes is that they
have an oscillatory behaviour in some regions called “cavities”. The localization of
these cavities depends directly on the angular frequency o and is thus different for
each modes. Firstly, concerning the p-modes, we see from Eq. (1.87) that they have
an oscillatory behaviour in the regions where ¢? > N? and o2 > L2 these regions are
called p-mode cavities. Secondly, concerning the g™-modes, we see from Eq. (1.88) that
they have an oscillatory behaviour in the regions where 0 < 02 < N? and 02 < L%
these regions are called g-mode cavities and are localized deeper than the p-mode
cavities. Thirdly, concerning the g -modes, we see from Eq. (1.88) that they have an
oscillatory behaviour in the regions where N2 < ¢? < 0, and thus only in the convection
zones. These spacial oscillations properties are explained and justified in more details
in the Oscillations Theorems by Scuflaire (1974a). We note that in very condensed
models, some modes can have a mixed character, with an osciilatory behaviour in an
inner g-mode cavity and at the same time an oscillatory behaviour in an outer p-mode
cavity.

In what follows, we will no longer consider g~ -modes and will omit the “+" in the
designation of the g™-modes. For a given spherical degree £. the g-modes, f-mode and
p-modes are classified by assiguing to each mode a radial order n. n > 0 for the p-
modes denoted pp,. n = 0 for the f-mode denoted f. n < 0 for the g-modes denoted gy,
and we have:

O0<.. . <olyg) <...<o(lgp) <oln) <olf) <olp) <olp) < ... < alp) < ...

An algorithm for the determination of the radial order n of a given mode was firstly
proposed by Scuflaire (1974b), where n is determined as the difference between the
number of nodes in the p-mode cavities and the number of nodes in the g-mode cavities.
This algorithm is perfectly valid under the Cowling approximation and thus accurate
for high values of [n], but must be used with care for small values of |n|.
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Chapter 2

Our treatment of the stellar interior

and atmosphere

This chapter is based on the article we have written in collaboration with Dr. "J.
De Ridder and the team of Professor C. Aerts of the Katholieke Universiteit Leuven:
Dupret, De Ridder et al. (2002). Pulsating stars offer us a unique opportunity to probe
their internal structure and, in turn, refine our knowledge of stellar evolution and test
the physics used in the models. Although precise periods can now currently be detected
in multi-periodic non-radial pulsators, the identification of the observed modes remains
a problem, while it is critical in providing key ingredients for asteroseismic inferences.
Different methods of mode identification in pulsating stars have been developed, based
on multi-colour photometry as will be explained in Section 3.2 (Watson 1988, Garrido et
al. 1990, Cugier et al. 1994, Heynderickx et al. 1994, Garrido 2000}, or on spectroscopic
observations of line-profile variations as explained in Section 3.3.3 (Buta & Smith 1979,
Aerts 1996, Telting & Schrijvers 1997). Up to now, in all the methods based on line-
profile variations, the non-adiabatic character of the pulsation was entirely neglected
or treated with an ad hoc parameter (Lee et al. 1992, Cugier 1993, Townsend 1997).
The pulsation is always highly non-adiabatic in the superficial layers of a star, i.e.
from the transition region (where the thermal relaxation time is of the same order as
the pulsation period) to the surface. The use of the adiabatic approximation is thus
inappropriate to obtain credible values for eigenfunctions such as §7/T or §F in the
atmosphere.

Different authors (Dziembowski 1977a; Saio & Cox 1980; Pesnell 1990) have already
performed calculations of non-radial non-adiabatic stellar pulsations, but none of their
studies includes a detailed treatment of the pulsation in the line forming region. The
goal of this chapter is to derive such a treatment, and to show how the results obtained
can be used to obtain more reliable theoretical line-profile variations. The treatment
proposed here and in Dupret, De Ridder et al. (2002) is an improvement of the treat-
ment proposed by Dupret (2001), by deriving better equations to model the temper-
ature variations in the atmosphere (Section 2.3.1) and taking more appropriately the
radiation into account in the dynamical equations (Section 2.3.2). Our treatment does
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not use the diffusion approximation in the atmosphere. It is based instead on the
hypothesis that the atmosphere remains in radiative equilibrium during the pulsation.

Our approach can be summarized as follows. In order to obtain better eigenfunctions in
the atmospheric layers, the stellar model is subdivided into two parts: the interior and
the atmosphere. The equations used in the interior are briefly recalled in Section 2.1, As
some of them are no longer valid in the atmosphere, we use a more adequate treatment
to model the pulsation in that region, as explained in Section 2.3. The eigenfunctions
are then computed globally (interior + atmosphere} using the two different sets of
differential equations for the two parts of the star; and with the appropriate matching
and boundary conditions. We will refer to the layer that connects the two regions as the
connecting loyer. The depth of the connecting layer depends-on the kind of star. For
massive stars without superficial convective layer, we choose typically the connecting
layer at a Rosseland optical depth 745 = 10, for § Scuti stars, we choose it at Toe = 1
(at the end of the thin convective layer) and for solar-like stars at the photosphere
(where T = Teg), but our results are not affected by moderate changes in the choice
of this layer. The outermost layer of the model corresponds to a very small optical
depth (log Tress < —4.125). Therefore, the whole line forming region is included in our
modeling, For the sake of brevity, we use the notation 7 (resp. x) for the Rosseland
mean optical depth (resp. opacity).

The formalism and numerical method we use to model and compute the non-radial non-
adiabatic oscillations in the interior are almost the same as those detailed in Dupret
(2001). We have chosen a Lagrangian formalism for all the perturbed variable except
the perturbation of the gravitational potential.

We think that this choice of a Lagrangian formalism is the best from a numerical point
of view. The surface boundary conditions and the perturbed equations of state are
naturally obtained using a Lagrangian description. With a Lagrangian description,
it is no longer necessary to compute derivative quantitities such as the Brunt-Viisila
frequency which are delicate to estimate from a numerical point of view. Because of
the boundary conditions, the Lagrangian variations of the thermodynamical quanti-
ties: P/P, 6p/p and 6T/T, ...remain bounded in the superficial layers. But in the
superficial layers of a star, dimensionless derivative quantities such as dinP/dlInr,
dlnp/dlnr or dInT/dInr are quite large, going up to values of the order of 10°. We
recall that for example §P/P = P'/P + (dln P/d1Inr) ér. Therefore, small values of
§P/P can lead to large values of P'/P. For all these reasons, from a numerical point
of view, the use of Eulerian perturbations is very different from the use of Lagrangian
perturbations. The only difference compared to Dupret (2001) is that we adopt here
the Eulerian perturbation of the gravitational potential instead of the Lagrangian per-
turbation because it is better suited to the computation of high-order g-modes. Our use
of Lagrangian perturbations (except for the gravitational potential) leads to a system
of equations very stable from a numerical point of view.
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We work in the linear approximation, we neglect the influence of rotation on the pul-
sation eigenfunctions, we assume a frozen convection, and finally, we use the diffusion
approximation to compute the perturbed radiative flux. The equations of linear non-
radial non-adiabatic oscillations have been derived in Section 1.5. For the sake of clarity,
we recall below their expressions in the Lagrangian formalism we have adopted.

The radial component of the equation of momentum conservation reads:
d'  d{gg)  146P)  dp

2, = —— - — 2.1
oL dr * dr * p dr T P (2.1)

The transversal component of the equation of momentum conservation reads:

1 0P
o’y = - <'e'>" + 9& + —) : (2.2)
, P
The equation of mass conservation together with Eq. (2.2) gives:
dp 1L d o, W+ 7, PN
i ,.—2@(” &) - g\ T ab T - )= 0. (2.3)
The perturbed Poisson equation reads:
1d [/ ,dy e+ . dp
——— | P i — L = 4x@G 0p — —-—-CT . 2.4
72 dr (I dr ) = Y i P dr ° (24)

Freezing the transversal component of the Lagrangian variation of the convective flux,
the equation of energy conservation reads:

_ o 1 déL Je  dp 1d(r3¢)

o705 = dmr2p dr Te (? * o * re  dr
6(@ + 1) 6T 57' €h>
nry LA R LA 2.5
dmprd <LR (7‘ (dT/dr) 'r> C oy (2:5)

where L = 4xr2F,. Under the diffusion approximation and freezing the radial compo-
nent of the Lagrangian variation of the convective flux, L /L is given by:

—_— 2.6
T K p * dT/dr dr (2.6)

&L &, Ly 8T 0K dp déT/dr d§T>
—_—= 2 4 .
L T L

On the other hand, freezing the Lagrangian variation of the convective luminosity gives:

oL Ly & oK Sp  doéT/dr dé&;
—_— = s —_— —_—— — R nd —_— — e —_— . 2_
7 < v +3T T o T ama T 27
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2.2 Dimensionless formulation and central boundary
conditions

The central boundary conditions are obtained by imposing the regularity of the so-
lutions at the center (finite values for the perturbed variables and their derivatives).
After some algebra, it can be shown that this condition of reg,ulanty implies that,
close to the center, the radial displacement is proportional to r‘~! and the other per-
turbed variables are proportional to 7. A justification of those results can be found,
for example, in Unno et al. (1989, §18.1 p. 162).

When equations have to be solved numerically, it is appropriate as a preliminary step to
express them in a dimensioniess form. We define the following dimensionless symbols:

r m 9 R 47 R3

r= i q= A W = = il o and  pyn = e (2.8)
And we define the following dimensionless variables:
‘= 1 & R, o irR* 1 dp
T g1 R ggﬁG’Mﬁn"w’ T GM2 et ’ ,Y'rép’
148 16T i 1 & ) L de
7= g —CT . 1§ = P Cn = TR and de, = per (2.9)

where ¢, ¢, 8. 7. 1. 9. (), and J¢, are finite at the centre, because of the condition of
regularity imposed at the center.

BEqgs. (2.1), {2.3), (2.4), (2.5) and (2.6) can be rewritten in a dimensionless form. All
the dimensionless variables and equilibrium functions have a derivative equal to zero
at the centre, which gives for example for ¢:

1d¢ LdC

lim - —= =2
ro0 7 do d{z?) "

_d¥

dz?

(0) . (2.10)

The radial component of the equation of momentum conservation (Eq. {2.1)) becomes
in a dimensionless formulation:

dGly) | dlae™Q 148

I B
wiES dz dz Pm dzx

~1

Dividing by 2!, we find after some algebra:

. 3’ d x
W =4 =1 L 4 22y
C < + C f)n N le <S‘O + €> pm dI &€ '

Tt is easy to show that:

q pln
lim = £ (2.13)
Therefore, at the center (z = 0), Eq. (2.12) reduces simply to:
2 Pm ,8 >
w Ll + —(+ — . 2.14
C ( 3 Pm ( )
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The equation of mass conservation (Eq. (2.3)) gives in a dimensionless formulation:

d (! )
w? (x“afy + _(x_(_)) = {+1) (7: @ + —z e+ Q;ﬁ> = W+ 2.

dz
(2.15)
Dividing by ¢, we obtain:
2{ 2 d¢ Y q BN _ o
wiizty T+ (+1)C) =2LL+1) [ + ;gc + P = w? L{+1) . (2.16)

Eqgs. (2.12) and (2.16) degenerate to the same equation when z — 0. In order to lift
this degeneracy, we substitute the value of w?¢ — £ (p + (g/2®) ¢ + 3/pwm) given by Eq.
(2.12) in Eq. (2.16), we divide by 22, and we take the limit for z — 0. Using:
lim Pm — 3q/23 - }_dzpm
z50 T2 5 da?
we obtain then the following equation at the center:

2 2 2
¢ o pw d*C 1 dp VA8 pm )
<7+d2>+(€+1)( +3dz3+5dx2<+ +L7"O

(0), (2.17)

The perturbed Poisson equation (Eq. (2.4)) gives in a dimensionless formulation:
d? 24+2d 1 dlnpy
e NIRRTy

— — ), (2.19)
dz<- T dz J
which is equivalent to:
d [ o dp) o 1dnpn, 59
55@ @)= i Tw ) (2.20)
At the centre, Eq. (2.19) gives:
d2g0 dz In Pm
= - 2
e+ 55 = o (v - SRR ). (221)

For the conservation of energy equation (Eq. (2.5)), we introduce the following dimen-
sionless symbols:

R L) M o copm = 3
GM MTc,pyuz®’ * T L) v z? '
Lo = L(r)/L(R), LrL = LLR(ST)) and  LcL I;(Sf;) (2.22)
Eq. (2.5) gives then:
iwn _ 1 d@ | d(ZnGL/L)
o T fofm (56“” Yt aRT G ) T I &
v ¢ 1 d@*)
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Figure 2.1: Logarithm of the dimensionless number k (defined in Eq. 2.22), as func-
tion of g ="m /M (top)-and-log T (bottom), for a 10 Mg S Cephei-model.

For the perturbed luminosity, we obtain from Eq. (2.6) (frozen convective flux):

oL
L

1 d@E¥) d@®t0)]
= 92 -2 - [4 . _ — .
T C+L7L[x ((4 = kr)d (1+/€p)'y)+d1nT/d$ e Erea
‘ (2.24)
And on the other hand, with a frozen convective luminosity, Eq. (2.7) gives:
oL ;
T = L L [m‘((él — k)9 — (L + Kp)7)

T InT/de  de az

1 d(zf9)  ,d=*¢)]

(2.25)

The three parts of a star

The dimensionless formulation of the equation of energy conservation (Eq. (2.23)) per-
mits to see easily that a pulsating star can be divided into three parts. The important
point is that the coefficient k appearing in Eq. (2.23) is of the order of the dynam-
ical time divided by the thermal relaxation time (see Eqs. (1.1) and (1.4)) and has
extremely different values in the central layers and in the superficial layers of a star.
In Figure 2.1, we give the values of log(k) from the center (left) to the surface (right)
of a 10 M, S Cephei model. The abscissa is the mass ratio ¢ = m/M in the top figure
and the logarithm of temperature for the bottom figure.

We' see that, in the internal layers of a star, k is extremely small, because the heat
capacity is very high. Therefore, we deduce from Eq. (2.23) that the pulsation will be
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quasi-adiabatic (65/¢, =~ 0) in the main part of a star, in term of mass. We call this
part of the star the quasi-adiabatic region. This part has a dominant weight in the
integral expression for the pulsation frequencies (Eq. {1.71)). Therefore, the pulsation
frequencies can be computed under the adiabatic approximation without significant
loss of precision. We compared the frequenciss computed by our non-adiabatic code
to the ones computed with an adiabatic code and confirm this result, the difference is
always negligible.

But & is increasing quickly in the superficial layers going up to significant values.
Therefore, the pulsation is always highly non-adiabatic in the very superficial layers
of a star. The reason is that, contrary to the internal layers, the heat capacity of the
superficial layers is very low. In the very superficial layers, k is so high that the second
term of the right hand side of Eq. (2.23) {derivative of JL) takes very low values.
Therefore §L is approximately constant in the very superficial layers, so that these
layers remain in very good approximation in radiative equilibrium. This hypothesis
of radiative equilibrium is the main foundation of our non- adlabatl(, treatment in the
stellar atmosphere. as will be explained in Section 2.3.

Between these two regions, there is a region where the thermal relaxation time is
of the same order as the period of pulsation. We call this region: the transition
region. This region is extremely important because it is there that the main driving
and damping mechanisms are occuring, as will be discussed in Section 3.1.

TRT,

We examine now the behaviour of these equations when z — 0. With a frozen con-
vective flux, we will see that the equation obtained by substituting Eq. (2.24) in Eq.
(2.23) is regular at the center. But on the contrary, with a frozen convective luminosity.
the equation obtained by substituting Eq. (2.25) in Eq. (2.23) has a singularity at
x = 0. It is easy to show that k. ¢y and €; have finite values when x — 0. Freezing
the Lagrangian variation of the convective flux gives after some algebra the following
equation at the center:

dz?

‘Z—” = 3(0er + ) ~ LeLy — LrL(6+3) (4 = vp) 0 = (1 + 5,)7)
Cad 42 (LrL) Ly T d?y
Inde L:? (dlnT/de - QL T
2 = 2.
+ (£-1) [q(l + LrL) + M} ¢+ (2¢+3) d%, . {2.26)

We note that all the terms of Eq. (2.26) are finite at the center.

For a frozen convective luminosity, we obtain a similar result, but with an additional
term which is singular at the center. This singular term is:

e .
2(£+1) LeL = . (2.27)

Therefore, freezing the Lagrangian variation of the convective luminosity is inappro-
priate in central convective zones.
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2.3 'Treatment of the atmosphere

The system of equations used in the interior is no longer valid in the atmosphere,
for two reasons. Firstly, the diffusion equation relating the radiative flux to the local
gradient of temperature is no longer valid, and secondly, the interior approximation of
the radiative pressure

Pr=-aT! (2.28)

Cof o

is also no longer valid in the atmosphere. In Section 2.3.1, we explain how Egs. (2.5)
and (2.6) can be replaced by a more appropriate one. Avoiding Eq. (2.28) will require
a rewriting of the momentum equation, as explained in Section 2.3.2. In Section 2.3.3,
we give the surface boundary conditions used to close the problem.

2.3.1 Radiative equilibrium in the local atmosphere

In a non-radially pulsating star, all the eigenfunctions have an angular dependence. It
is therefore useful to define a “local atmosphere” as the gas column at a given angular
position (6, ), and at a given time. In what follows we will always refer to this local
atmosphere although we will often omit the word “local” for the sake of brevity.

An important property of the atmosphere of a pulsating star is that its heat capacity
is very small. Defining the thermal relaxation time of the atmosphere as the time
necessary for it to lose all its internal energy with a luminosity L:

Th = Te,dm [/ L (2.29)

atim.

(in this case, the bottom of the atmosphere is at an optical depth 7 = 1), we find
that, for the atmosphere of near-main sequence variable stars, 7y = 15, which is much
smaller than the typical pulsation periods. In a very good approximation. we can
therefore assume that the local atmosphere remains in radiative equilibrium during the
pulsation (V - F = 0).

A hydrostatic equilibrium atmosphere model in the plane-parallel approximation is
entirely determined by its effective temperature Teog, its gravity g and its chemical
composition. Given the chemical composition. the local temperature can therefore be
written as a function of the Rosseland mean optical depth 7. Tz and g

T=T(TTx.9) (2.30)
Considering the radiative equilibrium property of the local atmosphere, our main ap-
proximation is to assume that, at each phase during the pulsation cycle, the T'(7) law
in the local atmosphere is the same as the T{r) law of an equilibrium atmosphere
model. During the pulsation, the two parameters Tor and g characterising the equilib-
rium atmosphere model, and thus the local atmosphere, are varying with time and are
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function of 4 and . For a given time and a given (8, ¢), the temperature in the local
atmosphere (equilibrium value + perturbation) is thus given by:

TQ‘!‘(;T:T(TO”}‘éT, Teo+0Tem, gg—l—ége). (231)

§r is the Lagrangian perturbation of the Rosseland mean optical depth whereby we
remark that layers of constant optical depth do not follow the motion of matter. 67,z is
the variation of the effective temperature of the local atmosphere. dg. is the variation of
the local gravity from the point of view of a comoving frame, i.e. the gravity corrected

for the pulsational acceleration.
In the linear approximation, Eq. (2.31) gives:

6T _ OInT 6T olnT igﬁ dlnT 55_7'_
T  dlnTg Tesr Olng. ge dlnr 1

(2.32)

For a given mode, the different perturbed quantities appearing in this equation are
proportional to the spherical harmonic Y/"(0,p). Perturbing the definition of the
Rosseland mean optical depth leads to:

06 ok 6 o&,
T Ok _e_{_f

—_— = — . 2.
or 5 0 or (2:33)
And finally, eliminating 67 between Eq. (2.32) and Eq. (2.33) gives:
oeT/T) _ OInT (éx + dp " ¢
dlnr  2lnt \ k I or
3 _OInT/dIn7*\ (6T 9T §Te IInT dge
dlnT/dInt T OlnTy T Olnge ge
2 2
fInT Ty *InT  bge (2.34)

nromTy Tg  dnrdlng g

It is Eq. (2.34) that we use instead of Egs. (2.5) and (2.6) in the atmosphere. The
different derivatives appearing in this equation are numerically estimated using a family
of hydrostatic equilibrium atmosphere models with different effective temperatures and
gravities bracketing those of the reference equilibrium model around which the star is
oscillating. In our applications, we use the atmosphere models by Kurucz (1993). How
we compute 6Teg/Teg and dge/ge is explained in Section 2.3.3.

2.2.2 Acceleration due to the radiation

In the previous section, we argued that the temperature distribution of the local at-
mosphere can be obtained from an equilibrium atmosphere model. The pressure and
density distributions as well as the displacement vector, however, must be computed by
solving the equations of conservation of mass and momentum in the entive atmosphere.
In what follows we explain how this is done.
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In the outer atmosphere of a star, the radiation field is no longer isotropic. As a
consequence, the radiation pressure tensor cannot be represented anymore by a diagonal
matrix Py I, where Py is a scalar and I is the identity, and the law Pg = (1/3)aT* is
no longer valid (see e.g: Mihalas 1999; §66). We recall that the equilibrium quantities
we use in the atmosphere are obtained from the models of Kurucz (1993). In these
models, the total pressure gradient is split up into the gas pressure gradient and the
acceleration due to the radiation (see Kurucz 1970, §2.11). In the perturbed model, we
proceed in the saince way, which permits to keep the consistency with the equilibrium
model. The momentum equation reads then:

7 P
o *-va:-vw—%+a§, (2.35)

where ¥ is the velocity, Py is the gas pressure and ag is the acceleration vector due to
the radiation. In this case, the flux-weighted mean opacity xp is very useful since it
can relate directly the acceleration due to the radiation to the flux:

an = e Fc, , (2.36)

(see e.g. Mihalas 1999, §82). To obtain the perturbed momentum equation, we make
the following assumptions:

al) We assume that 6|F| remains constant from the base of

outermost layer.

+ 1L b mar iAo A
tne GLILUBPHCIT L0 biiT

a2) We assume that the flux vector Fis parallel with — VT during the entire pulsation
cycle.

a3) We approximate the relative variation of the flux-weighted mean opacity by the
relative variation of the Rosseland opacity: dxp/kp ~ 0k/k.

To justify assumption (al), we recall that the equilibrium-atmosphere models we use
{Kurucz models) are obtained assuming that the atmosphere is in radiative equilibrium
and that it is'so thin that a plane parallel approximation can be adopted. These two
hypotheses imply that the equilibrium flux is assumed to be constant. As pointed out
in Section 2.3.1, the very small thermal relaxation time of the atmosphere permits
us to assume that the local atmosphere remains in radiative equilibrium during the
pulsation. This leads us to agsume, for the same reasons as in equilibrium, that 61F’[
remains constant in the atmosphere. Under the diffusion approximation, assumptions
(a2) and (a3) are clearly valid (see e.g. Mihalas (1999, §82) for the equivalence between
the two mean opacities). Assumptions (a2) and (a3) do not imply that the diffusion
approximation is valid, because we adopt the equilibrium values of d@g given by the
atmosphere models of Kurucsz, instead of obtaining them by computing the derivative
of Bq.(2.28). Tt is not easy to examine to what extent assumptions (a2) and (a3) remain
valid in the outermost layers of the atmosphere. We did different tests by changing
artificially the coefficients of the equations associated to these assumptions and the
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conclusion is that the errors coming from them have a neghglble impact on the final
results of our study.

Assumption (al) together with Stefan’s law gives at first order:

S|F| _6F, _ 6T
|| B T

Then, assumption {a3) together wi

+ 4—,—‘> . (2.38)

In the following equations, ar corresponds to the equilibrium value of the accelera-
tion due to the radiation. This quantity is obtained at each layer directly from the
Kurucz atmosphere models. From Eqs. (2.35) and (2.38) and after some algebra, we
find the following (,XplGSQl()n for the 1ad1al component of the equation of momentum
cotservation:

O(5P,/Py) Py

or p

57// O(J 6}) , ( §Pg
- 4

I S G T

- (3’1 NVECE N %—> : (2.39)
H F 81

2
o7 =

Assumption (a2) is used to compute the transversal component of the momentum
equation, and we find:

. 1 /6P 6T
26, = S| By - OR = | - 2.4
3 " ( P Y +g& —ar aT/ar> (2.40)
Consequently, the continuity equation reads:
5p 10 LE+1) (6P , ag 67T
—_ — —_—— ; . 2.41
st U8 = T\ Y 9E T Gy (2.41)

Eqs. (2.39) and (2.41) are used in the atmosphere instead of Egs. (2.1) and (2.3). In
the following subsection. we will show that these two sets of equations coincide at the
connecting layer between interior and atmosphere.

2.3.3 Boundary and matching conditions

The matching conditions we impose are the continuity of the different perturbed vari-
ables at the connecting layer between the interior and the atmosphere. It is important
o0 choose the connecting layer between interior and atmosphere at a place where the
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flux is purely radiative, or at least where the convective flux is negligible compared
to the radiative flux. The reason will be given in the last paragraph of Section 2.4.
The matching condition imposed on the perturbed flux allows us to compute 67og/Teg.
Indeed, from Egs. (2.6) and (2.37), we find at the connecting layer:

3 0T 0k dp " déT/dr _dg 0T

T K P dT/dr dr T T T

: (2.42)

Also dg./ge is obtained at the connecting layer. The variation of the gravity from the
point of view of a comoving frame reads:

80, = —(6ga), = 6(0p/Or) — ¢, . (2.43)
After some simple derivations, we find then:

0010 tm0r (o)

& (2.44)
Ge g mo1 g A

7
And we note that under the Cowling approximation and neglecting the surface deusity
divided by the mean density of the star, this equation takes the very simple form:

: y
9% _ _ (2 n ".l) & (2.45)
Ge g )

It is important to realize that Eqgs. (2.39) and (2.41) mathematically coincide with
Egs. (2.1) and (2.3) at the connecting layer. This follows directly from Egs. (2.28) and
(2.42). As a consequence. the derivatives of £,/R and 0F,/F, are continuous at the
connecting layer. The continuity of the derivative of 67/T at the connecting layer is
not imposed by the equations. For all the modes we have computed, the smoothness of
AT /T at the connecting layer was found a posteriori (see Chapter 4, Figures 4.13 and
4.30 for # Cephel and SPB models with the connecting layer at logT = 1 and Figure
4.50 for a § Scuti model with the connecting layer at logr = 0). This confirms the
validity of our treatment.

Different boundary conditions have to be imposed at the outermost layer of the model.
Firstly, we have the mechanical boundary condition. Usually, the mechanical boundary
condition is obtained by assuming that the third term of the right hand side of Eq.
(1.60) goes to zero at the surface. which gives the boundary condition Eq. (1.61). This
condition is justified either by assuming that lim,_q P/(pg R) = 0 (Cox 1980. §17.6b)
or by assuming that 8(6P/P)/0r = 0 at the surface (Pesnell 1990). However, for
massive stars such as 8 Cephei stars and SPBs, the acceleration due to the radiation
(@R ) cannot be neglected in Eq. (2.35). Our mechanical boundary condition is obtained
by neglecting the contribution due to the gas pressure alone. More precisely, we neglect
the first term of Eq. (2.39) at the surface, and the mechanical boundary condition reads:

o 0g&) | (dp _ 8B\
o e .<p Pg)@ ar)

ok 6T | 06 /
~ ap < R ekt 87‘) . (2.46)

o, =
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The potential boundary condition is, as usual, obtained by imposing a first order
continuous match (i.e. continuity of ¥’ and its first derivatives) between the inner
solution of the Poisson equation and the outer solution of the Laplace equation (Ledoux
& Walraven 1938):
!

oy t+1

or T
Finally, also Eq. (2.34) needs a boundary condition. It is obtained by evaluating Eq.
(2.32) at the outermost layer. Using the rule of I'Hospital and Eq. (2.33) to evaluate
lim, o 67 /7, we obtain the following boundary condition at the surface:

6T OlnT 6T.g OInT dg. 6InT <5_/*$ 6p+8fr>

P =—dnGp &, . (2.47)

T OlnTe Tog Glnge—g: Olnr

K p O (2.48)

2.4 Comparison with other approximations

To place our approximation in a broader context, we first recall the basic approxima-
tions made in three different equilibrium atmosphere models: the Eddington atmo-
sphere, the grey atmosphere and the non-grey (e.g. Kurucz) atmosphere.

The Eddington atmosphere is a plane-parallel, grey atmosphere, in radiative equilib-
rium and in LTE, where it is assumed that J = 3K (J is the mean intensity and K is
the second angular moment of the radiation field). In a radiative zone, the temperature
distribution of an Eddington atmosphere obeys the following well known law:

3 2
T(r) = ZTe‘lﬂc (7’ + §> . (2.49)
For a more general grey atmosphere, it is not assumed that J = 3K, and the temper-
ature distribution is given by

3
THr) = £ T (7 + () (2.50)
where ¢(7) is the well known Hopf function, which can be determined analytically as
well as numerically (see e.g. Mihalas 1978). We note that the Hopf function is unique,
it does not depend on the effective temperature and gravity of the atmosphere.

Finally, if we consider much more precise non-grey atmospheres (such as the models
of Kurucg), the temperature distribution takes a general form given by Eq. (2.30).
We emphasize that non-grey Kurucz atmospheres differ significantly from Eddington
and grey atmospheres. In Figure 2.2, we compare the temperature distribution of a
Kurucz atmosphere to the one of an Eddington atmosphere for a 10 M [ Cephei
model. We see that the two distributions are very different in most of the atmosphere.
In particular, the steep temperature gradient found up to very small optical depths in
the Kurucz atmosphere is not present in the Eddington atmosphere.

Our method is easily understood by following the same line of reasoning, going from
Eddington atmospheres to non-grey atmospheres, in the case of pulsating stars. More
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Figure 2.2: Temperature distribution of a Kurucz atmosphere model (solid line) com-
pared to the one of an Eddington model (dashed line), in the atmosphere of a 10 Mg
B Cephei model. The abscissa corresponds to the logarithm of the Rosseland optical
depth

precisely, in a pulsating star and in a radiative zone, the Eddington approximation
leads to the following equations (Saio & Cox 1980; Balmforth 1992):

7 o= —3%% vJ, (2.51)
acl* T dS
J = et | (2.52)

In a plane-parallel atmosphere at radiative equilibrium, this system of equations re-
duces to Eq. (2.49) (see e.g. Mihalas 1999 §82). In particular, we note that the
hypothesis of hydrostatic equilibrium need not be made in order to obtain Eqgs. (2.49)
and (2.50). In the beginning of Section 2.3.1, we argued that the hypothesis of radia-
tive equilibrium can be applied to the perturbed atmosphere, and the plane-parallel
hypothesis is certainly acceptable in our applications. Therefore, adopting the Ed-
dington approximation in the atmosphere of a pulsating star reduces in very good
approximation to perturbing Eq. (2.49). For the same physical reasons, making the
grey approximation in the atmosphere of a pulsating star leads simply to perturbing
Eq. (2.50). an approach which is adopted by Dupret (2001). In the treatment we
propose in this section, we proceed in the same way, but now for the more realistic
non-grey atmosphere models, which leads us to perturb Eq. (2.30).

We conclude that the Eddington approximation as well as the grey atmosphere ap-
proximation are particular cases of the more general approach presented in Section
2.3.1. As the Eddington and grey atmospheres do not lead to a good temperature dis-
tribution in the outer layers of the atmosphere (see Figure 2.2), the gain is significant
when using more realistic non-grey atmosphere models as we do. It is important to
note that, in the general method of small perturbations, the use of an approximation
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(e.g. the Eddington approximation) in the perturbed model makes sense if and only
if it is made in the equilibrium model as well. Therefore, one of the main advantages
of our method is simply that it permits to use better equilibrium models {the Kurucz
atmosphere models).

It could be argued that consistency is somehow lost in our method, because the Kurucz
atmosphere models make explicitly the hypothesis of hydrostatic equilibrium, which
is not valid for pulsating stars. We argue however, that the gain with our method
is significant. Firstly. the apparent loss of consistency is not important for the high
order g-modes of Slowly Pulsating B stars and for the low order p-modes of 3 Cephei
and 4 Scuti stars. If we compare. for example, the values of §P,/F, obtained by our
methed (solving the momentum equations throughout the entire atmosphere) to the
ones consistent with the static Kurucz models, we find relative differences between 10
and 20%. depending on the mode order. Secondly, the coupling between the thermal
structure of the atmosphere (7'(7) and Tue) and its dynamical structure (linked in first
approximation to its effective gravity) is generally small. The coefficient 91n7/91n g,
appears to be much smaller than d1n7T/0In Tog, and even with the significant values of
dge/ge found for the g Cephei p-modes, the corresponding term in Eq. (2.32) remains
much smaller than the two other ones (see Figure 4.13 in Section 4.1.5). It is only for
high order p-modes with frequencies close to the acoustic cut-off, that our use of hydro-
static Kurucz models becomes more questionable. For such modes, the only rigorous
way would be to solve explicitly the perturbed equations of radiation hydrodynamics,
which is beyond the scope of our current study.

We do not claim that the use of the Eddington and diffusion approximations are in-
appropriate in the study of non-adiabatic oscillations. For the study of the excitation
and damping mechanisms in pulsating stars, these approximations remain appropriate
when these mechanisms occur in layers much deeper than the atmosphere. Similarly.
the adiabatic approximation remains suitable for the computation of the frequencies of
g-modes and moderate order p-modes, as they are determined mostly by the internal
layers.

We note that a better thermal boundary condition has been proposed by Gabriel (1989).
The problem with Gabriel's treatment is that it applies only to the very superficial
layers of a star, where matter and radiation no longer interact, but no treatment is
proposed between the photosphere and these very superficial layers.

Finally, we remark that the natural path going from the Eddington approximation to
our better treatment makes sence only when there is no convection in the atmosphere.
In a convection zone, the Eddington approximation (J = 3K, ...) no longer implies Eq.
(2.49). More generally, there is no longer a simple link between the 7'(7) distribution
and the hypothesis of energy balance (V- F' = 0). We have thus no physical reasons
to expect that the T'(7) distribution in the perturbed atmosphere is the same as the
one of equilibrium atmosphere models in a convection zone. For stars with an envelope
convection zone, it is thus important to choose the connecting layer sufficiently outside,
so that the atmosphere is radiative.
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Chapter 3

Utility of our non-radial non-adiabatic
code

Our non-adiabatic code has different utilities. Firstly, it is a direct tool for the study of
the driving mechanisms of pulsating stars, as will be detailed in Section 3.1. Secoudly,
it improves significantly the discriminant power of mode identification methods based
on multi-colour photometry; and, by an appropriate confrontation between theory and
observations, it can be used to constrain stellar models, as will be detailed in Section
3.2. And finally, it can be used to determine the influence of temperature variations
on line-profile variations, as will be detailed in Section 3.3.

3.1 Driving mechanisms and stellar stability

One of the main utilities of a non-adiabatic code is that it is able to determine which
modes of a pulsating star are vibrationally stable and which are vibrationally unstable.
Moreover, the code permits to localize exactly the position of the driving and damping
regions of a star and to interpret physically the driving origin and mechanism, when it
occurs.

As explained in Section 1.5.2, the stability or instability of a mode (or more precisely
1ts growth or damping rate) is directly deduced from the imaginary part of the angular
frequency o. We recall that, in our linear formalism, the time dependence of a pulsation
mode is of the form e*, where ¢ is complex. We see therefore that, if S(o) > 0 then
the mode is stable and the damping rate is §(o), and if $(o) < 0 then the mode is
unstable and the growth rate is —S(o). The exact value of ¢ (real and imaginary
part) is computed by our non-adiabatic code, so that we can determine directly which
modes of a stellar model are vibrationally stable and which are vibrationally unstable.
We note that in practical cases, the pulsation is quasi-adiabatic in the main part of
the star. As a direct consequence, the imaginary part of ¢ is much smaller than the
real part, typically [$(o)|/|R(0)| & Tayn/Tux & 107° (see Egs. (1.1) and (1.3) for the
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definition of 74y, and 7uk). Therefore, much care has to be given to the numerical
algorithm of solution, in order to determine §(¢) with high precision. '

We have derived in Section 1.8 an integral expression for $(¢). This equation is very
useful for the physical interpretation of the driving mechanisms of pulsating stars and
we recall it here for the sake of clarity:

. /0 {gms} (T3 — 1) dm

A

: (3.1)
2%{0} / (& + e+ 1) 1eaf?) dm

S{o} =

On one hand, it is easily shown after some algebra, that the local work per unit of mass
done by the system during one cycle of pulsation is:

j[Pdv - —W\f{éj 55} —m{%'pas} (Ts—1). (3.2)

The average power of the thermodynamical cycle of pulsation of the -entire star is
obtained by integrating Eq. (3:2) over the entire mass of the star and dividing by the
pulsation period:

P o= 2 =

dé %{U} [
dt Jo L

blb'

T&S} (T3 —1)dm. (3.3)

On the other hand, it can be shown that the total energy (kinetic energy -+ acoustic
potential energy + gravitational potential energy) of a pulsation mode is:

R{c}?
2

4

e = b [T e+ aer gl am. (3.9

By combining Egs. (3.1), (3.3) and (3.4), we find thus:

%/dt = —25{0}. (3.5)

The physical interpretation of the above equations is immediate. If ${c} < 0 then the
total energy of the unstable mode increases with a growth rate —2 {o} (the factor 2
comes from the fact that the energy is proportional to the square of the velocity) and
if I{o} > 0 then the total energy of the stable mode decreases with a damping rate
23{o}. The opposite of the numerator of Eq. (3.1) is proportional to the work done
by the entire star during one thermodynamical cycle. By truncating this integral at a
given layer, we get the work done by the part of the star beneath this layer during one
cycle, which gives directly the effect of the different layers on the driving or damping
of the star. The parts of the stars where 3{(6p/p)T6S} < 0 are driving the stellar
pulsation and the parts of the star where S{(0p/p)T6S} > 0 are damping the stellar
pulsation. All the above quantities are computed by our non-adiabatic code, so that
we can analyze and localize the driving mechanisms for a given stellar model.
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We have shown in Section 2.2 that a star can be subdivided into three parts: the in-
ternal quasi-adiabatic region where §5/¢, = 0, the transition region where the thermal
relaxation time is of the same order as the period of pulsation and the very superficial
region where the pulsation is highly non-adiabatic. It is easy to see that the region
which will play the main role in the driving and damping mechanisms is the transition
region. The quasi-adiabatic region does not play in general a significant role because
45 =~ 0 there (see Eq. (3.1)), and the very superficial region does not play a significant
role because its heat capacity is very low, so that 4L is approximately constant there
{see Eq. {3.6)).

The main driving mechanism of the variable stars studied in the present work is usually
named the x-mechanism or s-y-mechanism. A qualitative explanation of this mecha-
nism was firstly proposed by Cox (1967). In order to simplify the explanation, we will
work now in the quasi-adiabatic approximation. Since the driving region (transition
region) is generally situated close to the quasi-adiabatic region, this approximation is
appropriate for the following discussion. Moreover, we consider radial modes. Under
these assumptions. we showed in Section 1.9.2 that Eq. (3.1) veduces to Eq. (1.78).

which gives, using Eq. (1.76):
/‘U 6T [déL se) dm
I sl
1 Jo T \dm

S{O—} - 2 0'02

(3.6)

And we see the two terms which can have a driving effect on the star: a term propor-
tional to de (nuclear reactions term) and a term proportional to d§L/dm (transport
term). The nuclear reactions term gives the excitation due to the nuclear reactions.
Except for very massive stars (M > 20 M. ), this term does not play in a significant
role in general, because the nuclear reactions occur in the very central layers were the
pulsation is quasi-adiabatic. We will not discuss its influence here. The transport term
is thus generally at the origin of the stability or instability of stars. From Eq. (3.6), we
see that the regions where §L is decreasing outwards at the hot phase (67" > 0) have a
driving effect on the star. From a thermodynamic point of view, this case corresponds
to a motor cycle where energy is taken by the system at the hot phase and released at
the cold phase. On the contrary, the regions where 6L is increasing outwards at the
hot phase have a damping effect. For a radial mode and a frozen convective luminosity.
the perturbed luminosity is given by:

6L Ly <4f_, 8T Ok 55T/8'r>
-

+3= — (3.7)

T kT aT/ar

L L

We focus on the term —dx/x which plays in general a dominant role on the variation

of the luminosity. In the quasi adiabatic approximation, we can write:
ok 6P (Ty—1l)kr +x, 6P

= Rps 0

= . 3.8
I P F]_ P ( )

The choice of §P/P is appropriate because it is always a very smooth eigenfunction.
not much affected by the opacity bumps, partial ionization zones and convection zones,
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contrary to other eigenfunctions (67°/T, ép/p, ...). This smooth behaviour of §P/P
is due to the control by the equation of momentum conservation.

In usual circumstances (e.g. Kramers opacity law, complete ionization) we have xps
—0.8. Since 6P/ P is generally increasing outwards at the hot phase, the contribution
of —d/k in Eq. (3.7) implies that §L/L is increasing outwards at the hot phase, which
has a damping effect on the pulsation.

However, in the superficial layers of a star, large opacity bump(s) are present in the
regions of partial ionization (see the graphs of x in Figures 4.4, 4.23 and 4.41). These
opacity bumps can have a significant driving effect on the star. More precisely, in parts
of these regions, kpg is increasing very steeply outwards and can take positive values.
Therefore, in these regions, the contribution of —dx/x implies that 6L/L is decreasing
outwards at the hot phase, which has a driving effect on the pulsation. This mechanism
is called the x-mechanism. The adiabatic exponents I's and I'y are also significantly
affected by the partial ionization zones, and play thus also an important role in this
mechanism. For this reason, it is sometimes called the x-vy-mechanism. It is efficient
when it occurs in the transition region and thus when a partial ionization zone is
sitnated exactly in the transition region. It can be shown that the “classical” instability
strip where are situated the well known classical Cepheids, the RR Lyrae and the § Seuti
stars (see Figure 1) corresponds exactly to the region of the HR diagram for which the
transition region and the Hell partial ionization zone coincide. The instability of the
S Cephei and Slowly Pulsating B stars is also explained by a sn-mechanism. For these
stars, it is the metal opacity bump which coincides with the transition region. We will
llustrate and study in more details this mechanism in Sections 4.1.3. 4.2.3 and 4.3.3.

Finally. we mention another mechanism sometimes invoked for the explanation of the
driving of some pulsating stars: the convective blocking. In some specific cases. the
mean life time of the convective cells at the base of the envelope convection zoune is
much longer than the period of pulsation, so that a frozen convection approximation
is admissible. By freezing the convective luminosity, we obtain Eq. (3.7) for a radial
mode. In the convective blocking mechanism, the steep decrease of Ly /L at the base of
the convection zone implies a decrease of 6L/L (see Eq. {3.7)) and thus the driving of
the star. This mechanism has been proposed by Guzik et al. (2000) as an explanation
of the driving of the gravity modes of v Doradus stars. We will discuss in more detail
this mechanism in Section 4.4.4.

3.2 Non-adiabatic observables in multi-colour pho-
tometry

The observation of the magnitude variations of a pulsating star in different colour
filters and the confrontation with non-adiabatic theoretical predictions can be used in
order to identify the degree ¢ of the pulsation modes, and to improve our knowledge of
stellar interiors and atmospheres. Mode identification methods based on multi-colour
photometry have been developed by different authors. Dziembowski (1977b) was the
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first to-derive an expression for the bolometric magnitude variation of a non-radially
pulsating star. He suggested also that a Wesselink technique could be formulated
from these expressions. Balona & Stobie (1979) recast the suggestion of Dziembowski
in an observationally feasible way. Stamford & Watson (1981) derived an expression
for the monochromatic magnitude variations of a non-radially pulsating star. They
proposed to compute the local emergent monochromatic flux variation on the basis
of equilibrium atmosphere models (see Eq. (3.10) below) and they simplified the way
to compute the influence of the stellar surface distortion. Watson (1988) improved
the method by taking the variation of the limb darkening into account (see Eq. (3.11)
below), and discussed the importance of the different terms in the equation giving the
monochromatic magnitude variations of a non-radially pulsating star. Garrido et al.
(1990) and Garrido (2000) derived a method of mode identification using Strémgren
photometry, based on the formalism of Watson (1988), and applied it to & Scuti and
v Doradus stars. Heynderickx et al. (1994) derived an expression for the surface
distortion of a non-radially pulsating star in a Lagrangian formalism. He developed a
method of mode identification based on photometric amplitude ratios and applied it
to B Cephei stars.

In-all the previously cited papers, the non-adiabatic character of the pulsation was
neglected or treated with an ad hoc parameter. Cugler et al. (1994) was the first to
use non-adiabatic computations for photometric mode identification, using the non-
adiabatic-pulsation code of Dziembowski (1977a). The same code was also used by
Balona & Evers (1999) for mode identifications of § Scuti stars. In comparison with
other non-adiabatic codes, the special care that we give to the treatment of the pulsa-
tion in the atmosphere (see Section 2.3) improves the accuracy and thus the discrimi-
nant power of these methods.

3.2.1 The one-layer approximation

We mention firstly an approximation which has been always made until now in the
photometric and in the spectroscopic mode identification methods: the one-layer ap-
prozimation. Except from the pulsational frequencies, the only other observables when
studying stellar pulsations are associated to the stellar surface, because stars are opaque
mediums: Since the mode identification methods use such other observables, a natu-
ral hypothesis in this frame is to consider the star as a single surface deformed with
time due to the stellar pulsation. In the next developments, we are going to call this
surface: the single photosphere. The mean distance to the center of this single
photosphere is the radius R of the star (see the definition of R in Section 1.3.2). In a
linear approximation, the deformation and the velocity field of the single photosphere
can be derived directly from the displacement vector ? at a distance r = R, as will
be explained later. We will discuss the validity of this approximation in Section 3.2.4.
The problem is that, avoiding this approximation in a consistent way is very difficult
and makes the computations much more complicated.
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3.2.2 Monochromatic magnitude variations of a non-radially
pulsating star '

In this subsection, we derive a theoretical expression for the monochromatic magnitude
variations of a non-radially pulsating star. Similar expressions have been derived by
different authors (see above), but we remake here the entire developments, in order to
see exactly the steps where the things can be improved.

Contrary to the equilibrium spherical symmetric case, for non-radial pulsations, the
monochromatic amount of energy radiated by the entire star, as observed by a distant
observer (E(A, t)) and the monochromatic outgoing flux corresponding to a local surface

element of the star (1?}’)\+) are no longer represented by the same quantity (we use here
the same notations as in Heynderickx et al. (1994)). What we intend to determine here
is the variation of E(A,t). To achieve this, we will have to integrate the monochromatic
intensity variation over the perturbed stellar surface.

In what follows, we are going to work in two reference frames with origins at the center
of the star: the R reference frame with spherical coordinates (r, 8, ¢) is with a polar
axis corresponding to the polar (rotation) axis of the star, and the O reference frame
with spherical coordinates {r/, 8, ¢') is with a polar axis in the direction of the observer.
The inclination angle between these two reference frames is denoted by ¢. We are also
going to work with a new kind of perturbation, the radial Lagrangian perturba-
tion denoted by §,. 6, (X) is the variation of X, following the radial component of
the movement of the matter. With this new notation, the next derivations will be
simplified, because 6,0 = 6,¢ = 0. In particular, this formalism is very well adapted
to the determination of the geometrical distortion of the stellar surface, because at
first order, this distorsion is not affected by the displacement field in the transversal
direction. More precisely, the transversal motions change the stellar surface density,
but do not affect the position and orientation of this surface (at first order).

We begin by giving all the assumptions we are going to make, in order to obtain a
theoretical expression for the variation of E(A, ).

al) We work in the linear approximation.

a2) We neglect the coupling of modes due to the interaction between rotation and
pulsation. The angular dependence of a non-radial mode is thus described by a
single spherical harmonic.

a3) We assume that the gas column of the atmosphere at a given angular position
(8, ¢) is well described by a plane parallel atmosphere, which we call the local
atmosphere.

a4) For the geometrical distortion of the stellar surface, we work in the one-layer
approximation. It is assumed that the visible part of the star, i.e. the photosphere,
can be described by a single surface which is spherical at equilibrium. The radius
Ry of this sphere is the radius of the star, and in our method, we assume that
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it corresponds to the layer where the local temperature is equal to the effective
temperature of the star. During the pulsation, it is assumed that the photosphere
follows the movement of the matter. The surface distortion can therefore be
deduced from the displacement field: 5 (Ro.0,0,1).

aB) We assume that during the pulsation cycle, the monochromatic outwards flux Fy
of the local atmosphere is, for each given time, the same as the monochromatic
outwards flux of an equilibrium plane parallel atmosphere model.

. ) - =+ . .
aB) We assume that, during the pulsation cycle, F), remains perpendicular to the
photosphere.

=+ . 1 1
a7) We assume that F\ does not depend on the optical depth in the local atmosphere.

a8) We assume that the local atmosphere depends only on two varying parameters:
the local effective temperature and the local gravity. The chemical composition
of the local atmosphere is assumed to remain constant.

a8) We assume that during the pulsation cycle. the limb darkening law h, of the
local atmosphere is, for each given time, the same as the limb darkening law of
an equilibrium plane parallel atmosphere model with the orientation given by
assumption (ad) and (a6).

We will discuss in more details in Section 3.2.4 the validity of assumption (ad). The
important point is that the relative difference between the displacement of constant
optical depth layers and the “real” displacement of the matter (d7/(kp Ro)) is very
small for g-modes and moderate order p-modes (for these modes. the value of |€,] at the
base of the atmosphere is close to the value of |§,| at the outermost layers). However,
we showed in Section 2.3 that it is not appropriate to assume that the Lagrangian
variation of the temperature is equal to the variation of the temperature at constant
optical depth. We illustrate this clearly for a 8 Cephei model in Section 4.1.5, Figure
4.13, for a Slowly Pulsating B model in Section 4.2.5, Figure 4.30, and for a ¢ Scuti
model in Section 4.3.5, Figure 4.50.

We note that assumption {a7) concerns only the flux. We do not make this hypothesis
for the temperature which depends strongly on the optical depth in stellar atmospheres
(see Section 2.3, Figure 2.2).

Assumptions (a5) and (a9) have the same physical justification as explained in Sec-
tion 2.3.1. Because of the very small thermal relaxation time of the atmosphere, we
assumed that, at each time of the pulsation cycle, the local atmosphere remains in
radiative equilibrium. On the base of this approximation, we assumed in Section 2.3.1
that, during the pulsation cycle, the temperature distribution (T'(r) law) in the local
atmosphere was, for each given time, the same as the temperature distribution of an
equilibrium atmosphere model. For the Same physical reasons, we make now the same

assumption for the monochromatic flux 156 % and for the limb darkening coefficient 5.
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From assumptions (a5), (a7} and (a8), the monochromatic flux variation in the local
atmosphere (equilibrium value + perturbation) is given by:

(F)y +0F(0,0,8) = F¥ [(Teg)y + 0Tee(6,9,1), g0 + 0g0(6,9,8)],  (3.9)
where F}f = ]F:\H] In the linear approximation, we have thus from Eq. {3.9):

SFY (811117;') 0T (amﬁ) 3.

3N

oinTw ) T dlnge Jo
5Teff 69@
- 3.10
Qary To + Qg 7 ( )

Eq. (3.9) was first proposed by Stamford & Watson (1981).

We proceed similarly for the variation of the limb darkening. From assumptions (a4),
(a6). (a8) and (a9). we obtain in the linear approximation:

00 foy Olnhy \ 0T Olnhy\ dge (aln Y\ .
- — 5 (7 -e3) 11
hx (8111 Tég) Tog + ( dln g ) e + o (m-ex), (3.11)

where 77 is the normal to the single photosphere. A similar equation was first proposed
by Watson (1988).

We define o as the normalization constant such that the local radial displacement of
the single photosphere is:

£.(6,0.t) = Bya P (cosb) cos(ot + mo), (3.12)

where 6 and ¢ are the usual spherical coordinates with respect to the polar (rotation)
axis of the star, P/*(z) is the Associated Legendre Function of degrees £ and m. and o
is the angular frequency of oscillation.

The quantities 6T,g /Teg and dg./g. can be computed very precisely by our non-adiabatic
code (see Section 2.3). On the other hand, we have seen previously (see Eq. (2.45)).
that in very good approximation, 6¢./ge is in antiphase with the radial displacement.
These two quantities can be expressed in term of the associated Legendre functions:

O,—;ﬂ—e—'g(é).é‘t) = fraP[*{cosb) cos{ot + mo + ¥r) and (3.13)
eff

3ge .

g—(@.(/),t) = — f,a P*(cosh) cos(ot + mae), (3.14)

where fr and f; are the amplitudes of 6T,q/Tes and dge/ge corresponding to a normal-
ized radial displacement at the photosphere.

After all these preliminaries, we can now compute the theoretical expression for the
variation of (A t). At equilibrinm, we have:

1 27
(R3/r2) / / Ly ¢ dg' do’
o Jo

E(N)

1 1 27 ‘ .
= / / B ha(u) ff Ry dp'dg (3.15)
0 0

27 r2
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where r, is the distance to the observer.

By perturbing Fq. {3.15) and defining S* as the visible stellar surface, we obtain:

SE(ME) = 6.E(\1) = 2—7}75 /ﬁ@, [Ff ha (7 20) 7 & dS]
1 1 2"‘ N
= s | [ e ) R o

27
+ FF / f hA(W &) Tz }R%m ¢’

+ B[ mw ar<dS>J. (3.16)
S+

For the first term of Eq. (3.16), we obtain, using Eq. (3.10), Eq. (3.13), Eq. (3.14)
and Pg”(cos 0) e = S5, qn PF(cos§) e ,

// (6FFY ho(py ¢ REdy' d¢

27'7“2
2 2
= % / / [am Jr P*{cos®) cos(ot + md + Pr)
22 Jo Jo
— gy [y Pi{cosl) cos{ot + mgz’))] () @ dp' de’
aR2FY
= ‘77r7"§/\ Z { g / J; aTA fr PF(W) cos(arg {qr} + ot + k¢ +9r)

— agy fo PE(1) cos(arg {qz} + ot + kgb')} ha(g) o dy dqﬁ’}. (3.17)

Since fozﬂ cos(k &'+ C) = 0 for |k| > 1, only the term with & = 0 is not equal to zero
in the right hand side of Eq. (3.17). We obtain therefore:
1 1 2 aRz F+ o )
sz [ ] GED ) Ry aw g = S PP

4

1
[am fr cos(ot-H1pr) — g £, cos(at)] / Po(d) ha() 1 dit’ . (3.18)
Q

We are going now to develop the second term of the right hand side of Eq. (3.16).

We compute now the variation of the normal: 6,7 . In Figure 3.1, we show how it can
be related to the gradient of the radial displacement. We have thus:

67*7 = “vhér
_ (% L O
(89 %t a0 9
C1fee ., 1 0
(ae' Ry ¢"> | (3.19)
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Figure 3.1: Variation of the normal to the single photosphere

And finally, using Eq. (3.12), we obtain in the O reference frame:

- 1 657‘ .
O (We—j) = 6 (W)‘f—z? = EE 50 sin ¢’
o s APE)
= —asin®f > laxl £ cos(arg {g} +ot+k¢'). (3.20)

4k du
k=—4 H

We can now compute the second term of the right hand side of Eq. (3.16). Using Egs.
§3 70 and (3.11), we find:

/ /T ho (77 - &) ﬁﬁ] R dy d¢y
0
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Again, only the term with & = 0 is not equal to zero in the right hand side of this
ecquation, and we have:

F+ 1 P
s [ e v mavas
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RIE ! 1P, (1
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And finally. we compute the last term of the right hand side of Eq. (3.16). 4,(dS) is
easily computed in our formalism:

5,(dS) = 5,(d8) - & = 2 Re& du' d¢'. (3.23)

Eq. (3.23) can be compared to what is obtained in a Lagrangian formalism. On the
basis of Heynderickx et al. (1994), De Ridder (2001, PhD thesis) derived the following
equation:

§(dS) = ( ; -V Ef) R2dy d¢’ (3.24)

where the definition of V- is given in Eq. (1.29) and E_h> is the transversal component
of the displacement vector. The difference between Eqs. (3.23) and (3.24) comes from
the fact that, on one hand in our formalism: 4,6’ = §,¢' = 0; but on the other hand
in a “classical” Lagrangian formalism: 66" and d¢’ are not equal to zero for non-radial
modes. We checked that the final results obtained using one or another of these two
formalisms are mathematically equivalent. The only difference is that the derivations
arve easier in our formalism.

We obtain therefore. for the last last term of the right hand side of Eq. (3.16):

F+ . -
5 A f ha(p) ' 6,(dS)
P

RZF/\T 9 57' 1oyt
= pR / / Ay (') R—@du d¢

a R2Fy " N it dd
2% {V]k}// ) i PE(p) cos(arg {qr} +ot+ k') du qu}

N}

R'Z F+
= 2(—1% P*(cost) cos(ot) / ha(u) i Py dut' (3.25)

s 0

From the property of the Legendre polynomials:

/01(1_ N <f+ df) dz~€£+l)/Pg )z f(z)dz (3.26)
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the sum of three terms of the previous equations can be simplified. These terms are:
the first term and last term of the right hand side of Eq. (3.22) and the right hand
side of Eq. (3.25). More precisely, we have:

! , dp, ohy\ 5 APy
/o [2:’” P — hy (1= p?) o (—87“7) p (1= p?) i dy/
1
= —({-1){£+2) / hy i Pedp' (3.27)
0

This simplification was first proposed by Stamford & Watson (1981). The final step of
all these derivations is achieved by substituting Eqs. (3.18), (3.22), (3.25) and (3.27)
into Eq. (3.16). We obtain then:

2.5 6E(\ 1) 2.5

(5’ E —_— e —— Pm 7 b
T Inio E(N) m1o ' (cos2) b

{ — (£—=1)(£+2) cos(at) + fr cos(at+1r) (e + Bra)

— Jy cos(ot) (g + Bn) | (3.28)
where dm, is the variation of the monochromatic visual magnitude at wavelenght A
and:

1 Oln by
by = / hop' Pedy . Bry = 1 by
0

JIn bey

—_ and By = . 3.29

Ol Ty a2 dlng ( )
In Eq. (3.28). the term proportional to (¢ —1)(£+2) corresponds to the influence of the
stellar surface distortion. the term proportional to fr corresponds to the influence of
the local effective temperature variation and the term proportional to f, corresponds
to the influence of the effective gravity variation.

In practice, what is really observed in multi-colour photometry is the integral of the
monochromatic magnitude variation over the response of the filter:

f({:_‘ax (577L\ wl(/\) dA
[ () da

Amin

dm; = (3.30)
where w;()) is the response curve of the filter 2. Therefore, the different terms of Eq.
(3.28) depending on A have to be integrated. following Eq. (3.30).

3.2.3 Comparison with other methods

At this point. our way to proceed diverges significantly from the one proposed by
Watson (1988), Heynderickx et al. (1994) and other authors. By using our non-
adiabatic code, we can compute directly and very precisely the tree main unknown
ingredients of Eq. (3.28): fr. ¥r and f,. But on the other hand, the previous authors
did not have such a non-adiabatic code and their way to estimate these parameters was
very approximative. In order to clarify the improvement of our method. we present
now the old method used by the previous authors. but we emphasize that. from this
point. we do not follow them anymore.
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Pressure variation

The first step of the procedure followed by the previous authors was to compute 4 P/ P
at the photosphere. As initially proposed by Buta & Smith {1979), they used the
following formula:

5P o “pf B < 7 6"’ 1

= = (f\f-{—l)f{—%—-f{ ):Q—Oy (3.31)

where K (also denoted by ay, for example in Watson (1988)) is the K-value of the
mode: oM

K = ap = (—7?—}2_8 . (332)

Eq. (3.31) is deduced from the “classical” mechanical boundary condition (Eq. (1.61)),
by .doing furthermore the following assumptions at the photosphere: dP/p = 0 and
i’ = 0 (Cowling approximation). We recall that we proposed an improvement of the
mechanical boundary condition in Section 2.3 (Eq. (2.46)). The advantage of BEq.
(3.31) is that it gives 0P/ P, without having to compute numerically the adiabatic or
non-adiabatic eigenfunctions troughout the entire star. If we assume that:

%(6’,¢,t) = —CaP*(cosf) cos{ct + m¢), (3.33)

we have therefore:
C=4+K'—+1)K. (3.34)

The computation of fr

On one hand, in order to compute fr, the previous authors propose to make a very

crude approximation: the adiabatic approximation. But we emphasize that, in reality.

the pulsation is always highly non-adiabatic in the superficial layers of a star, as will

be shown in chapter 4. Under the adiabatic approximation, we have:
oT olnT| 6P Ly—146P

T =~ omP|lg P T, P

(3.35)

Another approximation made by these authors is to assume that, at the photosphere,
the variation of the effective temperature is equal to the Lagrangian variation of the
local temperature: - )

0l o oT

T = T (3.36)
We will show that this approximation is not appropriate and that these two quantities
can be different for 8 Cephei stars (Section 4.1.5, Figure 4.13), Slowly Pulsating B
stars (Section 4.2.5, Figure 4.30) and 4§ Scuti stars (Section 4.3.5, Figure 4.50), when
a more rigorous treatment of the stellar atmosphere is adopted, as we did. From Eqgs.
(3.35) and (3.36), we obtain:

. Ty Py = 180° for C >0 (p— modes)
Jr = r ©] and { vp = 0° for C < 0 (high order g — modes)

2

(3.37)
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Watson (1988) introduced an ad-hoc parameter R to describe the departures from
adiabatic conditions on the stellar surface: '

Ir 2
[Cl(T2=1)"

but he did not compute it and let it as a free parameter such that 0.256 < R < 1.
Some authors (Cugier et al. 1994, Balona & Evers 1999) performed non-adiabatic
computations in order to determine R and thus fr in a more rigorous way. However,
they assumed Eq. (3.36) and their way to determine fq was inappropriate, as we are
going to show.

R = (3.38)

On the other hand, in comparison to all these derivations, we repeat that fr can
be computed in a more rigorous way, directly by our non-adiabatic code, with the
treatment of the atmosphere presented in Section 2.3, and without need to introduce
the free parameter R.

The computation of f,

f, also was not determined correctly until now. Stamford & Watson (1981), Heynder-
ickx et al. (1994) and several other authors proposed to take:

dlng )

f el = (_m c (3.39)

J ) b A
! 811’1 Pg =1

where p* is computed from equilibrium atmosphere models such as the models of

Kurucz (1993). Even some authors (Cugier et al. 1994, Balona & Evers 1999) proposed

to take: px = 117

In Section 2.3.3, Eq. (2.44), we proposed a more accurate way to determine 0g./g. and
thus f,. Under the Cowling approximation and neglecting the surface density divided
by the mean density of the star, we showed that Eq. (2.44) reduces to Eq. (2.45). Eq.
(2.45) gives simply:

fo=2+ K. (3.40)

We note that, indepentently from us, Cugier & Daszynska (2001) did also the correction
and proposed to use exactly the same equation as Eq. (3.40). The difference between
Eq. (3.40) and Eq. (3.39) with p* = 1 is due to the fact that the Lagrangian variation
of surface elements of the photosphere (2 — £(£+1)K) affects the Lagrangian variation
of the pressure described in Eq. (3.34), but does not affect the Lagrangian variation of
the effective gravity.

By comparing Eqgs. (3.34) and (3.40), we see that:

For p-modes : K is small so that the difference between C and f, is approximately
2

For g-modes : K is large, so that the difference between C and f, becomes very
important !



Therefore, our improved determination of f, has the largest impact on the photometric
mode identification of g-mode pulsators such as Slowly Pulsating B stars aud v Doradus
stars.

As conclusion:

e In the old method, it was necessary to compute firstly C by use of Eq. (3.34),
secondly fr by use of Eq. (3.37) or {3.38) and finally f, by use of Eq. (3.39).

o In our improved method, fr, ¢r and f, are directly computed by our non-
adiabatic code, with the treatment of the atmosphere presented in Section 2.3.
It is no longer necessary to estimate the intermediate parameters C' and R.

3.2.4 The perturbed stellar surface

In Section 3.2.2, we derived an expression for the monochromatic magnitude variation
of a non-radially pulsating star. For obtaining it, one of the main approximation we did
was the one-layer approximation. In the next paragraphs, we do not propose a better
determination of the surface distorsion, but we make some physical considerations
permitting to evaluate the validity of the one-layer approximation in the frame of
multi-colour photometric studies.

The transparency effect

The question we are asking here is: what is the visible surface of a non-radially pulsating
stay 7

It is true that in sufficiently deep stellar layers, the medium is completely opaque; and
for a completely opaque medium. the deformation of its visible surface is equal to the
deformation of its material surface, as deduced from the displacement field. Therefore,
for a completely opaque medium, the approximation we did for obtaining the perturbed
stellar surface is perfectly valid.

But in reality, the visible part of a star (its photosphere) is the transition zone between
the opaqgue interior and the optically thin atmosphere. Let A, (X)) be the variation of
X, following layers of constant optical depth. The point here is that, around the pho-
tosphere. following constant optical depths or following the movement of the matter is
not the same. The physical explanation of this phenomenon is eagy. During the pul-
sation, the thermodynamical characteristics of the medium (temperature, density) are
varying with time. Therefore, the opacity (which depends strongly on the temperature
and density) is also varying with time, so that the Lagrangian variation of the optical
depth is not negligible. In other words, as the star is pulsating, its transparency is
varying with time so that the visible layers do not follow exactly the movement of the
matter. We call this phenomenon: the transparency effect.
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Figure 3.2: Relative displacement between layers of constant Rosseland optical depths
and the Lagrangian movement of the matter, as function of the logarithm of the Rosse-
land optical depth, for the fundamental radial mode of a 9.5 My B Cephei model (top)
and for the mode £ = 1, gy, of a 4 M Slowly Pulsating B model (bottom). The vertical
line corresponds to the “single” photosphere where T' = T.g (the radial displacement

¢,/ R is normalized to 1 at this layer).

The difference between the relative displacement of a constant Rosseland optical depth
layer and the relative displacement of the matter is given by dr/(rkp R). We show in
Figure 3.2 the results obtained in the atmosphere of two different kinds of pulsating
stars and for a normalized radial displacement at the photosphere (§,/R =1 atr = R).
The top figure corresponds to the fundamental radial mode of 9.5 M, § Cephei model
and the bottom figure corresponds to the mode £ =1, g2 of a 4 My, Slowly Pulsating
B (SPB) model. We see that. for both cases, 07/(kp R) <« 1 at the photosphere.

Therefore, we can conclude that, for these stars, the transparency effect
is small and the “visible” stellar surface follows in good approximation the
movement of the matter.

By comparing the results obtained for the two kinds of stars, we see that the trans-
parvency effect is more important for the SPB star than for the 8 Cephei star. This
difference can be easily understood. For the high order g-modes of SPBs, the transver-
sal compression and displacement are dominating, so that the temperature, opacity
and optical depth variations are significant, for a given radial displacement. On the
contrary, for the low order p-modes of 3 Cephei stars, the radial compression and
displacement are dominating, so that the temperature. opacity and optical depth vari-
ations are smaller, for a given radial displacement.

The previous definitions and illustrations give an estimate of the importance of the
transparency effect, but unfortunately, they do not permit to determine more precisely
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the real distorsion of the visible stellar surface, which would be much more complicated.
When we are observing a stellar surface element in an oblique direction (7 - &7 = 1).
the optical depth 7, associated to the intensity field in the observer direction (87) is
such that:

dry  1.dr Kp

= 41
dr ' odr W (3.41)

Assuming that the visible stellar surface corresponds to constant values of 7, (for
example 7 = 1), we deduce directly from Eq. (3.41) that the visible stellar surface
is not spherical, even at equilibrium ! Therefore, if we want to proceed rigorously,
we would have to determine the deformation of a surface which is not spherical at
equilibrium. This very complex problem is out of the skope of our current study.

Surface orientation and limb darkening

Another point is to examine the validity of the expression we used for the variation
of the normal to the stellar surface (Eq. (3.19)). We continue to assume here that
the local atmosphere is well described by a plane parallel atmosphere. The physical
observable directly linked to the orientation of the local plane paraliel atmosphere is
the limb darkening. It is natural to assume that, from the point of view of the radiation
field, the planes parallel are perpendicular to the flux vector, so that the relevant angle
for determining the limb darkening is the angle between the flux and the direction
to the observer. But we know that, at least in the interior, the flux is parallel with
—VT. It is thus interesting to examine what would be the variation of a unit vector
7ig parallel with — V7. We have:

vT VA
5. (7E) = — 6, - . 3.42
w = = () = 777w o
Assuming that:
ST(R, 8, 0,t)
? 3 7 — Pm / .4
—aTjdlnr a E P/*(cos ) cos(ot + mo + ¢), (3.43)
we obtain for the difference between Eq. (3.42) and Eq. (3.19):
— Y dPZm : ya
5. () — 6, (W) = —akE ( 4 sinf cos{ct + m¢ + ) &g
:
L mE sin(ot +me +9) &) (344)
sin 6 ¢

We show in Figure 3.3 the values of F obtained in the atmosphere of a 9.5 My 8
Cephei model (top) and a 4 My SPB model (bottom). We see that, for both cases, the
values of £ are much smaller than 1 at the photosphere.

‘We conclude that, for these stars, the variation of the normal is relatively
well described by Eq. (3.19).
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Figure 3.8: Amplitude E corresponding to the difference between the variation of a
unit vector parallel with — VT and the variation of the normal to the “single” photo-
sphere, as function of the logarithm of the Rosseland optical depth, for the fundamental
radial mode of a 9.5 Mg B Cephei model (top) and for the mode £ =1, gp of a 4 My
Slowly Pulsating B model (bottom). The vertical line corresponds to the “single” pho-
tosphere where T = Tog.

The values of F are higher for the SPB model, because for high order g-modes the
transversal compression is dominating, so that the temperature variations are higher,
for a given radial displacement.

Again. the previous considerations give an estimate of the accuracy of our treatment
but they do not permit to determine with more precision the real distorsion of the
visible stellar surface. The problem here is that, assuming that the normal is parallel
with — VT would imply that the deformed stellar surface is isothermal, but we have
no physical reasons to expect that it is so. Even at equilibrium the visible surface is not
isothermal, because we see at different depths corresponding to different temperatures,
which is the origin of the limb darkening.

3.2.5 Mode identification and non-adiabatic asteroseismology

On the basis of Eq. (3.28), methods for the identification of the degree ¢ of pulsation
modes can be derived. We have to consider two cases: the variable stars with phase-
lags ¥ close to the adiabatic 0° or 180° and the variable stars for which the phase-lag
W is very different from the adiabatic values.
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Variable stars with quasi-adiabatic phase-lags

In the adiabatic case, all the eigenfunctions are real so that the variations of the different
physical quantities &., 8T, 6p, 6L are either in phase or in antiphase. In particular,
it is easy to show that the phase difference between the luminosity variation 4L and
the radial displacement &, is 180° for p-mode pulsations and 0° for high order g-mode
pulsations. From an observational point of view, the phase difference between the visnal
magnitude variation determined by photometry and the pulsational velocity variation
determined by spectroscopy (Doppler effect) is thus +90° for p-modes and —90° for
high order g-modes, in the adiabatic case.

Although the pulsation is always highly non-adiabatic in the superficial layers, some
kinds of pulsating stars show phase differences close to the adiabatic values. This is
typically the case for B Cephei and Slowly Pulsating B stars. A simple explanation
is that the driving of these stars occurs in the relatively deep metal opacity bump
close to the quasi-adiabatic region, and the heat capacity of the highly non-adiabatic
superficial layers is too small to affect the phase of §L. For these stars, the observed
phases of photometric magnitude variations are the same in the different filters and
the only photometric observables are the amplitudes.

The linear theory does not permit to predict the amplitudes of the eigenfunctions.
Therefore, it is appropriate to use amplitude ratios when comparing the theoretical
predictions to the observations. Moreover, when using amplitude ratios, the coefficient
P™(cosi) appearing in Eq. (3.28) vanishes, which is a very positive point since the
inclination angle 4 is extremely difficult to determine from observations.

A method of photometric mode identification based on amplitude ratios was first pro-
posed by Heynderickx et al. (1994), but in their method, the degree of non-adiabaticity
R (see Eq. (3.38)) was considered as a free ad-hoc parameter. We adopt here a simi-
lar method. but including more rigorous non-adiabatic computations. More precisely,
Dr. J. De Ridder improved the initial code of Heynderickx, so that it can now take
our non-adiabatic computations into account, throughout the parameters fr and ¢r
(amplitude and phase of local effective temperature variation for a normalized radial
displacement at the photosphere). The theoretical procedure of our mode identification
method is the following:

1. We compute a stellar model with the appropriate effective temperature, luminosity
and mass. In our applications, we use the new Code Liégeois d'Evolution Stellaire
written by R. Scuflaire.

2. We perform non-adiabatic computations for different degrees £ and for pulsation
frequencies close to the observed ones. In our applications, we use the non-adiabatic
code written by us in the frame of the present work. These computations give the

coefficients fr, ¥r and f, for different degrees £.

3. For each filter j and for each £. we compute
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(3.45)
using the values of fr, ¢¥r and f, computed at step 2. In our a,pplications we computed
the coefficients ar 5 and o (derivatives of the monochromatic flux) from the models of
Kurucz (1993). An analytical law for the limb darkening is needed for the computation
of bgy and its derivatives Sy and By\. In our applications, we used a quadratic limb
darkening law (Wade & Rucinski 1985). We note that an improved non-linear limb
darkening law has been proposed by Claret (2000), but his computations were only

made for Stromgren filters, while our applications concern Geneva and Johnson filters.

4. We choose a reference filter (indicated with subindex 1). For B stars, this reference
filter is the U filter giving the highest amplitudes and thus the highest S/N ratio. We
compare the theoretical amplitude ratios (A;m/A1 ) to the observed amplitude ratios
Ajons/ALons). The identified degree £ is the value who minimizes the x%

k 2
F.th _/ obs
- , 3.46
;Z { Al th Al obs } ( )

where k is the number of filters.
The application of this method to 8 Cephei, Slowly Pulsating B and + Doradus stars
will be presented in Sections 4.1.6, 4.2.6 and 4.4.5 respectively.

Variable stars with significant non-adiabatic phase-lags

Contrary to 8 Cephei and SPB stars, all the variable stars of the “classical” instability
strip: & Scuti, RR Lyrae and the classical Cepheids (see Figure 1 in the introduction)
exhibit phase-lags totally different from the adiabatic values.

The amplitudes of oscillations of the RR Lyrae and the classical Cepheids are very high.
their light curves are not sinusoidal and cannot be reproduced by the linear theory.
We will not consider them here and the following discussion applies mainly to § Scuti
stars,

For § Scuti stars. significant phase differences ¥ between the effective temperature
variation and the displacement are observed and predicted by theoretical non-adiabatic
computations (see Section 4.3.6, Figures 4.51, 4.52. 4.53 and 4.54). It is therefore useful
to use this phase information when comparing observations and theoretical predictions;
mode identification methods using it have been derived by Garrido et al. {1990) and
Balona & Evers (1999). The method of Garrido et al. (1990) is based on the use of
phase-amplitude diagrams as will be detailed below and the method of Balona & Evers



(1999) is based on a least square minimization, with an appropriate x* goodness-of-fit
g
criterion,

Garrido et al. (1990) derived a method of mode identification using Strémgren pho-
tometry and applied it to many § Scuti stars observed with the 1.5 m telescope of the
Sierra Nevada Observatory. In their method, the degree of non-adiabaticity R (see
Eq. (3.38)) and the phase-lag ¢r were considered as free ad-hoc parameters such that
0.25 < R < 1and 90° < 9 < 135° The principle is to construct phase-amplitude
diagrams corresponding to judicious combinations of the Stromgren filters. By using
Eq. (3.28) integrated over the passband of the filters (Eq. (3.30)), with R and ¢r as
free parameters, different “regions” corresponding to different degree £ can be deter-
mined. The identification of the degree ¢ is obtained by seeing in which “region” the
observations are situated. Moreover, the method permits to determine the values of R
and 2pr giving the best agreement between theory and observation, which is particu-
larly useful for the confrontation with theoretical non-adiabatic predictions. Garrido
et al. (1990) discussed which combinations of the filters are the most appropriate for
this purpose and showed that using colour indices (differences of magnitude between 2
filters) give a better discriminant power to the method than using the filters separately.
More precisely, it is easy to show that the variation of the colour indice m; — m; is:

Amax
6(m; —my)(t) = —13150/ %((—AA’)—t)(wi(/\)—wj(A))dA, (3.47)

min

where w;(A) and w;(A) are the normalized response curves of the filters 7 and j

/\max /\max
/ wiA) dA = / w(N)dA = 1
A

Amin min

and E()\) and 0E(A, t) are defined in Eqgs. (3.15) and (3.16).

We see immediately that the terms of E(A, t)/E(A) which do not depend on A vanish
in BEq. (3.47). Garrido et al. (1990) showed that the coefficient bgy (see Eq. (3.29)) is
very little dependent on A for £ < 2. Therefore, the geometrical distorsion term of Eq.
(3.28) proportional to (1 — £)(£ + 2) vanishes in good approximation in Eq. (3.47).

In what follows, we use the following notations for the magnitude variations:
Smi(t) = 6m; et = |Gmy| efotToOm) (3.48)

By appropriate combinations of filters, the contribution of the different terms of Eq.
(3.28) can thus be separated, which improves the discriminant power of the method.
Since the absolute amplitudes can not be determined in the linear approximation, and
the inclination angle i is extremely difficult to determine from the observations, we
have to divide Eq. (3.47) by the magnitude variation in a given filter. Garrido et
al. (1990) showed that, for Strémgren filters, the combinations é{m, — m,)/dm, and
§(my — ) /8y, give very good results. In an amplitude versus phase diagram and for
the first combination, we have thus in abscissa the phase difference: ¢(5(mp —my)) —
#(6m,) and in ordinate the amplitude ratio: |[6(my — my)| / 16my].
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The illustrations of such phase-amplitude diagrams are given in Section 4.3.6, Figures
4.55 and 4.56. In these diagrams, the different “regions” correspond to the theoretical
predictions for different degrees £, with the degree of non-adiabaticity R and the phase-
lag 97 as free parameters, the circles correspond to our non-adiabatic predictions for
modes with frequency close to the one of the fundamental radial mode, where fr and
Y7 are rigorously computed by our non-adiabatic code, and the crosses correspond
to the observations of ¢ Scuti stars by Garrido et al. (1990), all identified as radial
pulsators.

We note that the non-adiabatic predictions depend on some dominant parameters of
the theoretical models (e.g. the metallicity for 8 Cephei stars and SPBs, the mixing
length parameter « for § Scuti and v Doradus stars). Therefore, these parameters can
be constrained by a feed-back process after a unique mode identification is achieved.
We call this feed-back process non-adiabatic asteroseismology, in which we iterate the
procedures as above by adjusting the stellar parameters for the identified mode, until
we find the best fit between the theoretical non-adiabatic predictions and the observa-
tions. More precisely, for 8 Cephei stars and SPBs, the non-adiabatic predictions are
very sensitive to the metallicity, so that this parameter can be constrained for these
stars once definite mode identification is achieved. We will illustrate this procedure
in Section 4.1.6, for the estimate of the metallicity of the 8 Cephei star EN Lac. For
0 Scuti and « Doradus stars, the non-adiabatic predictions are very sensitive to the
characteristics of the superficial convection zone (see Section 4.3.6 and Balona & Evers
and photometric observations can significantly improve our understanding of this con-
vection zone. However, this procedure will be more difficult in this case, because of
the lack of knowledge of the convection-pulsation interaction, particularly in the very
thin superficial convection zone of § Scuti and v Doradus stars. Finally, the theoreti-
cal predictions are also very dependent on the atmosphere models and limb-darkening
law, throughout the derivatives of the monochromatic flux: oz, and a4y and the coef-
ficients derived from the limb-darkening law and its derivatives: by, Bry and Sy, as
they appear in Eq. (3.28). Therefore, these parameters could alsc be constrained, if
the observations are sufficiently precise.

3.3 Non-adiabatic observables in Line Profile Varia-
tions (LPVs)

This section is mainly based on the article written by Dr. J. De Ridder and us (De
Ridder. Dupret et al. 2002), on the PhD thesis of De Ridder (2001) and on the works
made in the frame of a very fruitful collaboration with him and the team of Professor
C. Aerts of the Katholieke Universiteit Leuven.

Thirty years ago, Osaki (1971) successfully modeled the basic properties of line profiles
of 8 Cephei stars. He showed that assuming only a non-radial velocity field could
mimic rather well the variations in position and width of the spectral lines. Proceeding
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so, he confirmed that variable stars such as 8 Cephei are not only radial pulsators
but. also non-radial pulsators as propesed by P. Ledoux twenty years earlier. Later
it-was discovered that § Cephei stars are not the only stars which show line profile
variations (LPVs) due to non-radial pulsations. The Slowly Pulsating B stars (SPBs),
the v Doradus stars and the ¢ Scuti stars exhibit similar LPVs.

Since the beginning of the 1980s, the spectroscopic resolution greatly improved so that
line profile variations can be studied in great detail. As a consequence of the Doppler
effect, precise information about the velocity field at the surface of pulsating stars
can be obtained from line-profile time series. LPVs have been used, for example, to
study the influence of rotation on pulsation {e.g. Lee & Saio 1990, Townsend 1997), to
distinguish between non-radial pulsation and spots (Hatzes 1998, Balona et al. 1999,
Briquet et al. 2001) or to perform mode identifications, as explained in more details
in Sect. 3.3.3.

3.3.1 Simulation of line profile time series

In this subsection. we show briefly how simulations of line profile variations due to
radial and non-radial oscillations can be performed. We recall that other sources of
line profile variations such as spots exist; they are not taken into account here. The
method presented in Sections 3.3.1 and 3.3.2 was implemented in the code PULSTAR
by Dr. J. De Ridder in the frame of his PhD thesis (2001) and is summarized in De
Ridder et al. (2002).

We denote by J(A. 7 d. t) dX dw dt the amount of energy that is radiated, at the position

7. through a unit surface, in the direction of the vector d within the solid angle dw,
in the time interval [t,¢ + dt] and in the wavelength interval [A, A + dA]. The quantity
I(\.7.d.t). called the specific intensity, is often abbreviated with I). Except for the
Sun. it is not possible to resolve the disks of stars. All what we see is the flux, which is
the integral of the intensity over the stellar disk. The flux of a normalized absorption
line profile, which we will denote with p(A.t). can generally be written as

A , -
// dA . d) t ) (1 _ mar(808)° (6 ’(bl).’ ¥ t)

c

f .
- A , .
/ / A ) ] (1 Veot (87,0 .¢) (9 ¢/)‘ kl7 t)

[

p(A. (3.49)

Here I,{)) is the continuous intensity (i.e. the intensity that would be observed if the
line was absent). dA is the local surface normal (||dA] is the area of an infinitesimal
element of this stellar surface). v.:(6',¢', 1) is the total velocity with respect to the
observer {pulsation + rotation -~ global velocity of the star) of the material element
at coordinates (¢, '), projected on the line of sight. %' is the unit vector pointing
from the star towards the observer. We omitted the r-coordinate since we assume
that it is fixed on the radial coordinate of the line formation layer. We note however
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that the accurate determination of the line formation layer is an important point, as
will be discussed later. The integration domain is the visible disk, and the integration
variables used are the angular coordinates in the O reference frame. The division
of the wavelength A by (1 — v,,:(6, ¢',£)/c) in Eq. (3.49) corresponds to the classical
Doppler effect and is the main cause of the line profile variations of non-radial pulsators.
Intuitively, during the non-radial pulsation, some parts of the star are moving towards
the observer (which results in a blue-shift of the line) and at the same time, other
parts of the star are moving in the opposite direction (which results in a red-shift of
the line); by integrating all these local effects over the entire stellar disk, we obtain a
complex variation of the line profile containing direct information about the velocity
field at the stellar surface.

The surface on which the integrations of Eq. (3.49) are performed has to be chosen
with care. As in Section 3.2.2, we work in the one-layer approximation, but we have to
determine precisely the distance of this layer to the center of the star. It appears that
the layer which contributes most to the flux depression of a spectral line is generally
situated in much outer layers than the photosphere. In our simulations of line-profile
variations, we have chosen the Si** triplet (456.784 nm) for 8 Cephei stars and the Si*
doublet (412.81 nm) for Slowly Pulsating B stars. These two lines are very popular for
such simulations. On the basis of a method firstly derived by Magain (1986), De Ridder
et al. (2002) showed that the layer which contributes most to the flux line depression
of the Si®* triplet is situated at log7 = —1.625 for a typical 5 Cephei atmosphere:
and the layer which contributes most to the flux line depression of the Sit doublet
is situated at log7 = —2 for a typical SPB atmosphere. We chose these layers as
integration domain of Eq. (3.49). We denote by R; the the distance from the center of
the star to the line formation layer, and we note that B, > R.

Once the depth of this layer is determined, we can derive its distorsion due to non-radial
oscillations. We assume here that this layer follows the movement of the matter. For
a discussion about the validity of this approximation, we refer to Section 3.2.4. The
variation of the surface elements df‘?(@’, @', t) can be derived. using the full Lagrangian
formalism of Heynderickx et al. (1994) (we refer to De Ridder 2001. §2.8 for more
details). or by using a radial Lagrangian formalism, as we do in Section 3.2.2.

The local velocity of a stellar surface element projected on the line of sight {v4) is the
sum of three terms: the pulsation velocity, the rotation velocity and the global velocity
of the star which respect to the observer.

The pulsation velocity

By taking the time derivative of Eq. (1.45) and using the definition of the spherical
harmonics in term of the associated Legendre functions, it is easy to show that for
a spheroidal mode of degree £ and azimuthal order m, the velocity field at the line
formation layer can be written in the R reference frame:
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Sv (8,6, t) = —v, N* Pim (cos ) sin(ot +me),
. , oF; m 6y . .,
dug(d, ¢, t) = —vp ghggg NP a(gos sin{ot + mo), (3.50)
Sug0, 6 8) = —2 % SlBi) N pmlicosg) cos(ot + mg)
»\U, @, = smﬁ f;( ) 7 3 cos{ot — me),

In order to get the contribution of the pulsation velocity on vy, we just have to projec
Eq. (3. 00) on the line of sight. For this purpose, it is appropriate to rewrite Eq. (3.50)
in the O reference frame (we refer to De Ridder 2001, §2.7.2 for more details).

By

The rotation velocity

Assuming a uniform rotation, the rotation velocity projected on the line of sight is
simply given by:

Voot (0, ¢) = v, sini sinf sing = v, sini sinf’ sing’ . (3.51)

The way to determine the other elements of Eq. (3.49) will be discussed 1 the next
section.

3.3.2 Influence of non-adiabatic temperature variations on LPVs
Our main contribution in the interpretation of LPVs has been to determine the influence
of non-adiabatic temperature variations, as will be discussed in this section.

Our main assumption in our non-adiabatic treatment of the stellar atmosphere is,
as detailed in Section 2.3, to assume that the local atmosphere remains in radiative
equilibrium during the puisation. This assumption is justified by the fact that the
thermal relaxation time of the atmosphere (= 1s) is much smaller than the typical
periods of pulsation. We can therefore expect that, during the pulsation, the local
intensity field of a spectral line will remain the same as the intensity field given by
equilibrium atmosphere models. More precisely, we make in this section the same
assumptions as in Section 3.2.2 (assumptions (al) to (a9)), but with the following
differrences. Pirstly, our assumptions concern now the intensity fleld I of a spectral
line instead of the monochromatic outwards flux of the continuum (Fy). Secondly, the
distorded stellar surface used in the frame of our one-layer approximation is now the
line formation layer, which is situated in the very outer atmosphere and not at the
photosphere (see above).

Plane parallel equilibrium atmosphere models give the intensity Ik, as function of the
wavelength A, the cosine of the angle between the line of sight and the stellar surface
normal p = cos#, the effective temperature T, the logarithm of gravity logg and
the chemical composition. In our applications, we computed and tabulated an LTE
Kuruez intensity grid Jxe (A, 1o, Tog, log g) with the Kuruez (1993) spectrum synthesis
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software, with solar chemical composition and microturbulent velocity fixed at a value
of 2 km/s. Under the above assumptions, we can derive the intensity field as function
of 8, ¢ and ¢ from the Kurucz grids, which gives:

(Io+61)(\, 8, 6, 1) = (3.52)
A )
Ixur Lm e+ ou(0, 9.ty Teg + 67w (0, ¢,1) , log(g + dg.(9, @ﬂ)} .
] - 2okl 0 F)

The influence of the non-adiabatic effective temperature appears in the term 07y of
this equation. This term can be directly computed by our non-adiabatic code, if the
amplitude of the radial displacement a = v,/0 is fixed at the line formation layer.
More precisely, we have:

5Teff

eﬁ

(6,6.1) = fria NJ* P (cos8) cos(ot +mé +1hn) (3.53)

where fr; (amplitude of local effetive temperature variation for a normalized radial
displacement at the line formation layer) and 7 (phase-lag) are computed by our non-
adiabatic code. We note that the convention of normalization in the determination of
fr is not the same as for fr (Eq. (3.13)), because the line formation layer is not the
photosphere.

Similarly, we have for the effective gravity variation:

Oge (0 #,t) = = fora NJ* P!m (cos ) cos(ot +m¢), (3.54)

where f,, (amplitude of local effetive gravity variation for a normalized radial displace-
ment at the line formation layer) is also computed by our non-adiabatic code (see Eq.
(2.44)). We note that, for this coefficient, the difference between the adiabatic and
non-adiabatic values is negligible.

We simplified the dependence of Ik, with respect to p by a least square fit to a limb-
darkening law of the form:

L) =a0+ Y ay (1—pt), (3.55)

k=1

which is a simplification of the non-linear limb-darkening law proposed by Claret
(2000):
I =1-— Zak (1—pt (3.56)
I \(N = 1
And finally. 6u(d, ¢.t) was determined with the full Lagrangian formalism of Heynd-
erickx et al. (1994) (see De Ridder 2001, §2.8). We note that we could also use the

Eulerian formalism of Buta & Smith (1979) or our radial Lagrangian formalism (see
Egs. (3.19) and (3.20)).
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Figure 3.4: Time series of part of the normalized spectrum of a 8 Cephei star pulsating
in the mode (£,m) = (2,1) and viewed under an inclination angle of 45°. To obtain a
better visual effect, the successive normalised spent - shifted with 0.011 continnum
units. The visible lines are mainly from Fe?™ and C*. Figure taken from De Ridder
(2001).

So. we have described how all the ingredients of Fys. (3.49) and (3.52) can be deter-
mined. As usually, for practical numerical simulations the integrals of Eq. (3.49) have
to be approximated by a discrete sum, subdividing the integration domain in finite
elements. In this case, the visible part of the star is subdivided in many cells (typi-
cally. (A0, Ag) = (2°,2°) for each cells). This method of simulation of line profile time
series. taking the non-adiabatic effects into account, was implemented in the computer
code “PULSTAR” by Dr. J. De Ridder. In Figure 3.4, we illustrate the time series of
part of the spectrum of a 8 Cephei star pulsating in the mode (£,m) = (2,1). We refer
to Sections 4.1.7 and 4.2.7 for the application of this method to § Cephei and Slowly
Pulsating B stars respectively.

3.3.3 Mode identification based on LPVs

Essentially three techniques of mode identification based on line profile variations are
currently used: line profile fitting, the moment method and Doppler imaging. We will
speak only about the first two methods and refer to Gies & Kullavanijaya (1988) and
Telting & Schrijvers (1997) for more details about the Doppler imaging method.

Line profile fitting

The basic principle of line profile fitting is quite simple: compare time series of the-
oretically computed line profiles with time series of the observed line profiles using a
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goodness of fit measure (e.g. based on least squares) to obtain a set of “best fitting
parameters”. In practice, this can be done as follows. For many couples (£, m), a grid
of all other (continuous) parameters (e.g. v,, ve and ¢) is set up. For each of these grid
points a time series of line profiles is computed and compared with the observational
data. An iterative convergence algorithm like the Levenberg-Marquardt method of
optimisation by non-linear least squares can be implemented in order to find the best
solution. A nice feature of this technique is that it is not only able to deliver the num-
bers (£,m) but also other parameters such as the inclination angle and the rotational
equatorial velocity. The main default of this method is that it is extremely CPU-time

consuming.

The moment method

In the moment method, the pulsation parameters are estimated by fitting only the first
few moments of a line profile instead of fitting the entire line profile {see e.g. Aerts et
al. 1992). Using a basic line profile model (Gaussian profiles with variations only due
to the Doppler shift), Aerts (1993) derived the following expressions for the first three
normalized moments:

{v) = a sin(ot +ay), (3.57)
(0¥ = bo+by sin(ot + Bi) + by sin(20t + B, , (3.58)
(WY = ¢ sin{ot+ 1) + ey sin(20t + 72) + ¢z sin{3ot + 73 (3.59)

The amplitudes a;. b; and ¢; depend -on the pulsation and rotation parameters £, m, v,.
v, and ¢ {and on the shape of the local line profile). The principle of the method is to
fit the observed variations of the first three moments with functions of the form Eqgs.
(3.57). (3.58) and (3.59). In this procedure, the choice of an accurate discriminant is
very important (Aerts 1996). Briquet et al. (2003a and 2003b) included the effect of

rotation in the moment method and optimized it for multi-periodic stars.
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Chapter 4

Applications

4.1 [ Cephei stars

4.1.1 [ Cephei stars from an observational point of view

We begin by giving a very short summary of what are 8 Cephei stars from an obser-
vational point of view. 8 Cephei stars are population I main-sequence stars (close to
the turn-off) with spectral types between B0 and B2.5. They are pulsating stars with
periods going from 3 to 8 hours. Most of the 3 Cephei are multiperiodic and, for many
of them, there is a strong evidence that some of their pulsation modes are non-radial.
Their masses range from 7 Mg to 20 M. B Cephei stars show generally photometric
as well as spectroscopic variations. However, more and more 8 Cephei stars are now
being discovered which show line profile variations, without detectable corresponding
photometric variations, e.g. w' Sco (Schrijvers 1999). By now, more than 100 stars are
confirmed or suspected 8 Cephei stars. Among them, slow rotators as well as rapid ro-
tators have been observed. Up to now, no magnetic fields have been detected, with the
exception of the prototype star S Cephei itself (Henrichs et al. 2000). The pulsation
periods are stable, although variations of the order of a second or smaller per century
have been observed in some § Cephei stars (e.g. Cuypers 1986). Except for the star
BW Vulpeculae, the pulsation of § Cephei stars is well described by the linear theory
(the light curves are sinusoidal). The amplitiide in the V filter is usually smaller than
0.1 mag.

4.1.2 [ Cephei stars from a theoretical point of view

From a stellar evolution point of view, 8 Cephei stars are close the end of the core
hydrogen-burning stage in the main sequence. Due to the high temperature sensitivity
of the dominant CNO cycle, they have a large convection core, but no superficial
convection zone is present. The periods of the 8 Cephei stars point towards low order
p-modes and/or low order g-modes. For such modes, the transversal compression of

337



T T T i T T T T T T I T T T T 7 T T T T B
log L/Ls .- ]
8- =t —
= ! ,+" === high~order g-mode (SPB-type) -
| M=60 7™ i instability : £=1 -2 a
5 - —
4 - ]
| = f Cep, field B
a B .Cep, NGC 3283 |
[ o B Cep, NGC 4755
3 |~ » B Cep, NGC 6231 —
| o SPB g
x ¢ Sct 4
" [« OPAL GNS3 (21 el.) | 4t i
" X =070, Z=002
2 o
1 L 1 H ‘ 1 1 ] ! L L J { I 1
4.8 4.6 4.4 4.2 4 3.8 3.6

log Tex

Figure 4.1: Situation of the 2 Cephei (e, A, O and %), SPB (o) and § scuti stars (x)
in a HR diagram and theoretical instability strips as computed by Pamyatnykh (1999).

1.0

338



L=
¥
T
L

o 0.2 0.4 5.6 0.8 1
X = r/R

Figure 4.2: Real part of the radial displacement: ${&./R} as function of z = r/R for
the fundamental radial mode of a 9.5 M. 3 Cephei model.
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Figure 4.3: Real part of the radial displacement: R{¢&,/R} (top) and of the transversal
displacement: R{&,/R} (bottom) as function of z = r/R for the mode £ = 1, g; of
a 9.5 Mz 5 Cephei model. The vertical line corresponds to the frontier between the
central convection zone and the radiative envelope.
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the matter is much smaller than the radial compression: more precisely, the term
proportional to £(£+ 1) is very small in the equation of mass conservation (Egs. (1.47)
and (2.3)). Because of the dominating radial compression, we deduce also that in
the superficial layers and under the adiabatic approximation, ép/p and 6P/F are in
antiphase with the radial displacement (contrary to high order g-modes for which they
have the same phase). Our non-adiabatic computations predict a very small extra
phase-lag between the superficial temperature variation and the radial displacement,
as will be shown in Section 4.1.6. Avoided crossings and mixing between g-modes
and p-modes are frequent phenomenons in 8 Cephei stars; a typical illustration of the
avoided crossings can be seen in Figures 4.8, 4.9 and 4.10 where the behaviour of the
frequencies of different modes as function of the age of the model are given along some
5 Cephei evolution tracks.

We can see in Figure 4.1 the situation of some 8 Cephei stars in a HR diagram (repre-
sented with e, 2\, O and *). On the same figure, the theoretical instability strip derived
by Pamyatnykh (1999) is given. In Figure 4.2, we give the real part of the radial dis-
placement R{¢,/R} for the fundamental radial mode of a 9.5 M 3 Cephei model (the
global characteristics of this model are given in Table 4.2, model 2a). In Figure 4.3, we
give the real part of the displacement in the radial direction (R{&,/R}, top) and in the
transversal direction (R{&,/R}, bottom) for the mode £ = 1, g; of the same model. In
these figures, the abscissa corresponds to 2 = r/R (from left to right, we go from the
center to the surface of the star). These eigenfunctions are normalized in such a way
that £, /R = 1 at the photosphere (z = 1). The mode £ = 1, g, illustrates the typical
case of a mixed mode, with a g-mode behaviour (significant transversal displacement)
in the central layers and a p-mode behaviour (dominating radial displacement) in the
superficial layers.

4.1.3 Driving mechanism of the § Cephei stars

An important capacity of our non-adiabatic code is that it permits to study with high
precision the driving mechanisms occuring in 3 Cephel stars. As proposed by Cox et
al. (1992). Moskalik & Dziembowski (1992), Kiriakidis et al. (1992). Dziembowski
& Pamyatnykh {1993a) and Pamyatnykh (1999), the driving mechanism at the basis
of the excitation of the B Cephei low order p-modes and g-modes is a s-mechanism
associated to the metal opacity bump, at temperatures around 200.000 K (log T ~ 5.3).
In order to illustrate this phenomenon, we give the results we obtained for a 8 Cephei
model whose the global characteristics are given in Table 4.2 (model 2a). It is a good
model of the star EN(16) Lac: the global characteristics (effective temperature and
luminosity) and the theoretical periods are very close to the observations.

In Figure 4.4, we give at the the top the opacity in ¢m?/g as function of the logarithm
of temperature (from left to right, we go from the stellar center to the surface). We can
see 2 bumps of opacity. The first bump at log T =~ 5.3 is due to the tremendous number
of iron lines in this region (Cox et al. 1992). This opacity bump is very important since

it is at the origin of the driving of § Cephei stars. And a second bump at logT ~ 4.6
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Figure 4.4: Opacity in em?/g (top), kps = g_llg—%‘s (middle) and logarithm of the

thermal relaxation time in seconds: log(r,) (bottom), as function of the logarithm of
temperature, for a 9.5 My model of the § Cephei star EN Lac.
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corresponds to the second partial ionization zone of Helium. At the middle of Figure
4.4, we give the graph of the logarithmic derivative of the opacity with respect to the
pressure at constant entropy:

Olnky  Tz3—1 Kp

1o

fres = JlnPis N Fl T+ Fl '

(4.1)
This graph will help us in the qualitative explanation of the £ mechanism. The impor-
tant point is that ¢ increases outwards in the driving region. Finally, we give at the
bottom the graph of the logarithm of the thermal relaxation time in seconds: log(7.),
as function of the logarithm of temperature. The horizontal dashed line with the label
p1 gives the logarithm of the period of pulsation of the fundamental radial mode and
the horizontal dot-dashed line with the label gos gives the logarithm of the period of
pulsation of the mode £ =1, go5.

In Figure 4.5, we illustrate some non-adiabatic results obtained for the fundamental
radial mode of the S Cephei model given in Table 4.2 (model 2a). We give in the
middle panel of Figure 4.5, the graph of the work integral, normalized in such a way

that the final value at the surface is the dimensionless growth rate (W(1) = —{w}):
e ép RT6S
. / %{%RGM}(Fg—l)rﬁzpmdx
W(z) = 0 L (4.2)

o / (I&/RI” + (¢ +1) &/ RI%) 2° pra dz

The abscissa corresponds to the logaritm of temperature. The regions where W has
a positive derivative are driving the mode and the regions where W has a negative
derivative are damping the mode. A negative value of W at a given layer means that
the work achieved during one cycle by the part of the star below this layer is negative.
Therefore, this part of the star is damping the pulsation. A positive value of W at
a given layer means that the work achieved during one cycle by the part of the star
below this layer is positive. Therefore, this part of the star is driving the pulsation.
In the top panel of the same figure, we give the derivative of —W with respect to the
logarithm of temperature: —dW/dlogT. The regions where —dW/dlogT is positive
arve driving the mode and the regions where —dW/dlogT is negative are damping the
mode. Finally, we give in the bottom panel of Figure 4.5, the graph of the relative
amplitude of variation of the luminosity.

On the basis of Figures 4.4 and 4.5, we can now explain in details the driving mechanism
occuring in 3 Cephei stars. As usually in stellar stability, we can divide the star
in three parts (see the graph of the thermal relaxation time, bottom of Figure 4.4).
Firstly, there is the quasi-adiabatic region where the thermal relaxation time is much
larger than the period of pulsation. Secondly, there is the transition region where the
thermal relaxation time is of the same order as the period of pulsation. The middle
of the transition region is given by the intersection between the horizontal dashed line
with the label p; (logarithm of the theoretical period of the fundamental radial mode)
and the logarithm of the thermal relaxation time in the bottom panel of Figure 4.4.
And thirdly, there is the highly non-adiabatic region where the thermal relaxation time
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is much smaller than the period of pulsation. The region of a star where the driving or
damping mechanisms are the most efficient is always the transition region. In our case,
the transition region is situated at logT ~ 5.3, which is exactly the place of the metal
opacity bump (see Figure 4.4). For the physical interpretation of the driving, we refer
firstly to Eq. (1.78). This equation corresponds to the quasi-adiabatic approximation
and to a radial mode, but it is sufficient for the present discussion. We deduce from
Eq. (1.78) that the driving regions are the regions where §L is decreasing outwards
at the hot phase {motor thermodynamical cycle). And we see that it is exactly what
we obtain for our model in Figure 4.5 (bottom): |01/L] is decreasing outwards in the
transition region. The cause of this luminosity decrease is the metal opacity bump.
More pracisely, kps is increasing outwards in the transition region (Figure 4.4, middle).
Therefore, §r/x is increasing outwards at the hot phase. And finally, from Eq. (2.6) or
Eq. (2.7), this implies that 6L /L is decreasing outwards at the hot phase. As a simple
summary, at the transition region and during the hot phase, the luminosity variation
is blocked by the opacity barrier, which is driving the oscillation.

In order to show that this driving mechanism affects low order p-modes and g-modes
but not high order g-modes (for § Cephei stars), we give in Figure 4.6 the results
obtained for the mode £ = 1, go5 of our 9.5 Mz model. The explanation of the stability
of the high order g-modes of § Cephei stars is the following. For high order g-modes
(greater periods), the transition region where the period is of the same order as the
thermal relaxation time is situated in more inside layers (Figure 4.4, bottom). In this
region, sps (Figure 4.4, middle) and thus dx/x has not a steep gradient outwards
{contrary to the more outside layers). And therefore §L/L is increasing outwards at
the hot phase (around logT = 5.6 in Figure 4.6, bottom), which has a damping effect
on the pulsation (Figure 4.6, top and middle). In the exciting regions situated more
outside, the thermal relaxation time is much smaller than the period of pulsation, so
that the driving is inefficient and cannot counterbalance the damping of the more inside
layers.

In Figure 4.7, we give HR diagrams with evolution tracks of models with different
masses and metallicities. The blue edges of the instability strips obtained with our
non-adiabatic code for the fundamental radial mode are also given. We show in more
details the unstable modes of these models in Figures 4.8, 4.9, 4.10 and 4.11. The first
three figures correspond to sequences with different metallicities: Z = 0.02 in Figure
4.8, Z = 0.025 in Figure 4.9 and Z = 0.015 in Figure 4.10. The masses of the stars
corresponding to these 3 sequences are slightly different and where chosen in such a
way that the evolution tracks are very close in the HR diagram. In Figure 4.11, we
show the unstable modes obtained along a more massive 12 Mg sequence with solar
metallicity. In each figure, we give four graphs corresponding to the spherical degrees
£=0,{=1,£=2and £ = 3. In each graph, we give the frequencies in cycles/day of
modes of different radial order n, as function of the age of the models in Myears, and
a scale with the logarithm of the effective temperature is given at the top. The empty
circles correspond to stable modes and the full circles to unstable modes.

We see that only modes with frequencies close to the frequency of the fundamental
radial mode are predicted to be unstable. Except for the Z = 0.025 models, we predict
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no unstable modes for the young models close to the ZAMS. By comparing the 3
figures, we see that the number of unstable modes increases quickly with the metallicity
of the model. The physical explanation is simple. The larger is the metallicity, the
larger is the metal opacity bump, and therefore the more efficient is the x-mechanism
driving the modes. These theoretical results are in good agreement with the typical
observed frequencies of 8 Cephei stars. In particular, for the 8 Cephei star EN Lac, well
represented by the models with an age of approximately 16 Myears, all the modes in
the observed range of frequency are predicted to be unstables, even for the model with
the small metallicity Z = 0.015. By comparing the results obtained for the 9.5 M and
12 Mg sequences of evolution with solar metallicity (Figures 4.7 (left), 4.8 and 4.11),
we see that the blue edge of the instability strip is closer to the turn-off for the more
massive 12 M, models than for the 9.5 Mg models, in agreement with Pamyatnykh
(1999). We see that the radial orders of the unstable modes are little dependent on
the mass, for a given metallicity; we only note that the first radial overtone is unstable
for the evolved 12 Mg models but it is always stable for the 9.5 My models with solar
metallicity. '
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Figure 4.7: HR diagram with the blue edge of the instability strip for the fundamental
radial mode and for models with different metallicities and masses.
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Figure 4.8: Stable and unstable modes of degree £ = 0 (left, top), £ = 1 (right, top),
# = 2 (left, bottom) and £ = 3 (right, bottom) along a 9.5 M sequence of evolution
with solar metallicity (Z = 0.02). We give the frequencies of the modes in cycles/day
as function of the age in Myears and of log(T.g). The full circles correspond to the
unstable modes and the empty circles to the stable modes.
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= 1 (right, top),

£ = 2 (left, bottom) and ¢ = 3 (right, bottom) along a 9.7 M, sequence of evolution
with Z = 0.025. We give the frequencies of the modes in cycles/day as function of the
age in Myears and of log(Tes). The full circles correspond to the unstable modes and
the empty circles to the stable modes.
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Figure 4.10: Stable and unstable modes of degree £ = 0 (left, top), £ == 1 (right, top),
¢ = 2 {left, bottom} and ¢ = 3 (right, bottom) along a 9.4 M sequence of evolution
with Z = 0.015. We give the frequencies of the modes in cycles/day as function of the
age in Myears and of log(Teg). The full circles correspond to the unstable modes and
the empty circles to the stable modes.
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Figure 4.11: Stable and unstable modes of degree £
¢ = 2 (left, bottom) and ¢ = 3 (right, bottom) alo

= 0 (left, top), £ = 1 (right, top),
g a 12 M, sequence of evolution

with solar metallicity (X = 0.7 and Z = 0.02). We give the frequencies of the modes in
cycles/day as function of the age in Myears and of log(Tyg). The full circles correspond
to the unstable modes and the empty civcles to the stable modes.
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4,1.4 Comparison between adiabatic and non-adiabatic eigen-
functions

dT

2.5 i
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£ 1
45 L i L L 1 i )

7.5 7 5.5 5 4.5 4
log T

o
w
o

Figure 4.12: Real part of the Lagrangian variation of the temperature 67°/T as com-
puted by our non-adiabatic code (solid line with the label dT) compared to the adia-
batic Lagrangian variation of the temperature 67/T|,q = (I3 —1)/T'1 6P/ P, (dashed
line with the label dT.q), as function of the logarithm of temperature, from the center
to the surface of the star.

Tt is useful to show how different are the adiabatic and non-adiabatic eigenfunctions in
the interior of 8 Cephei stars. As in Section 4.1.3, we illustrate the results obtained
for a typical 9.5 M, 3 Cephei model whose global characteristics are given in Table
4.2 (model 2a), and for the fundamental radial mode. In Figure 4.12, we compare the
real part of the Lagrangian variation of the temperature 67 /T as computed by our
non-adiabatic code (solid line with the label d'T) to the adiabatic Lagrangian variation
of the temperature (dashed line with the label dT.4) defined by:

0T|  Ty—14P

. 4.3)
T ] Iy P fad (

ad

The eigenfunctions are normalized in such a way that the relative radial displacement
is equal to 1 at the photosphere. We see that in the guasi-adiabatic region (from the
center to log7T = 5.4), the non-adiabatic and the adiabatic temperature variations are
the same. On the contrary, from the driving region to the superficial layers, the two
become totally different. The high non-adiabaticity of the superficial layers is explained
by the small thermal relaxation time compared to the period of pulsation in this region
(Figure 4.4, bottom). The qualitative behaviour of the eigenfunctions of Figure 4.12
has a simple physical explanation.
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Firstly, concerning the non-adiabatic temperature variation (solid line}, the two bumps
correspond exactly to the two bumps of opacity (Figure 4.4, top). The reason is the
following. In the superficial layers, the luminosity variation 6L/L is approximately
constant because of the small thermal relaxation time (Figure 4.5, bottom). From the
perturbed diffusion equation (Eq. (2.6)), changes of the opacity variation (6x/x) are
thus counterbalanced by changes of (947/9r)/(dT/dr). In other words, changes in the
derivatives of the opacity are counterbalanced by changes of the derivative of §T/T.
And therefore, the qualitative behaviour of §7/T is scaled on the qualitative behaviour
of the equilibrium opacity.

Secondly, concerning the adiabatic temperature variation {dashed line), the bumps
correspond exactly to the bumps of the adiabatic gradient (I's — 1)/’ due to the
partial ionization zones. The reason is that the Lagrangian variation of the pressure has
a smooth behaviour because of the control by the equation of momentum conservation
(Eq. (2.1)). Therefore, from Eq. (4.3), the qualitative behaviour of the adiabatic
temperature variation is scaled on the adiabatic gradient.

4.1.5 Non-adiabatic eigenfunctions in the atmosphere of 8 Cephei
stars

The main specificity of our non-adiabatic code is the special care given to the treatment
of the pulsation in the atmosphere, we illustrate in this section some of the resulis
obtained in the atmosphere of a typical § Cephei star (same model and same mode
as in Section 4.1.4). For all our applications to  Cephei stars, the connecting layer
between the interior and atmosphere specific treatments (Chapter 2) was chosen at
7 = 10. This layer is sufficiently deep, so that the diffusion approximation is valid
beneath it.

In Figure 4.13, the solid line (label “dT”) is the graph of |§7/7] in the atmosphere.
The abscissa corresponds to the logarithm of the Rosseland optical depth. The vertical
line corresponds to the photosphere where T' = Tog. The smoothness of the graph at
log T = 1 confirms that our two specific treatments in the interior and in the atmosphere
match very well at the connecting layer. On the same figure, we give the moduli of
the different terms of Eq. (2.32), which is the base of our non-adiabatic treatment in
the atmosphere. We see that |91nT/8n g 6g./ge| (label (2)) is very small compared
to the other terms. It is important to note that the term [0InT/81ln7 (§7/7)] (label
(3)) is large. Physically, it means that the Lagrangian variation of the temperature
[6T/T| and the variation of the temperature at constant optical depth |A,T/T| ~
8InT/0nTeg (6Ter/Ter)| (label (1)) are two totally different quantities for 8 cephei
stars. It could seem surprising that |@1nT/81n7 (67/7)| does not go to zero at the
outermost layer. This comes from the significant values of 8In7/81In7 in the Kurucz
atmosphere models, even at very small optical depths (see Figure 2.2): In order to
examine if this “surprising” phenomenon has a significant impact on the results, we
examined the results obtained by putting artificially 81In T/01In7 (67/7) to zero at the
outermost layer (last term of Eq. (2.48)). Only the values of §T/T in the outermost
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Figure 4.13: Amplitude of Lagrangian temperature variation |07 /T]| (solid line with
the label “dT"), amplitude of local effective temperature variation |6Tes/Ter| (dot-
dashed line with the label “dTe”) and moduli of the different contributing terms of the
right-hand side of Eq. (2.32). The dashed line with the label (1) is the modulus of the
first term (oc 6Tox/Teg), the dot-dashed line with the label (2) is the modulus of the
second term (o< 0ge/ge) and the dotted line with the label (3) is the modulus of the
third term (o< 67/7), the vertical line corresponds to the photosphere where T' = T
The functions were computed for the fundamental radial mode, in the atmosphere of
a 9.5 Mg 8 Cephei model (Table 4.2, model 2a).

layers (from log7 = —2 to the last layer) are significantly affected by this artificial
change. The impact on the other results, such as 67w /Ter is found to be very small.

Comparing the value of |67/T| at the photosphere to the value of |6T¢s/Teg| shows that
they are very different. This leads us to compare the boundary condition we impose
on the flux — Eqs. (2.37) and (2.42) — to the thermal boundary condition adopted by
Dziembowski (1977a) and Pesnell (1990), which reads: 6L,/L = 2&,/r 4+ 46T/T. For
the latter, it is assumed implicitly that 6T /T = 6Teg/Teg (Eq. (3.36)) at the outermost
layer of the model. Eq. (3.36) is also assumed in the photometric mode identification
method of Cugier et al. (1994) and Balona & Evers (1999). Since we found that these
two quantities are very different, our treatment appears as a significant improvement.
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4.1.6 Non-adiabatic photometric observables in § Cephei stars

As presented in Section 3.2, multi-colour photometric observations can be confronted
to the theoretical predictions of our non-adiabatic code. We have shown that this
confrontation can be used as a tool for mode identification. In this Section, we present
the application of our method of photometric mode identification to 8 Cephei stars.
A part of the results presented in this Section are given in Dupret et al. (2003a and
2003b) and Aerts et al. (2003b).

We will concentrate on the case of the star EN(16) Lac. This star has been studied
by many authors. We refer to Chapellier et al. (1995) and Lehmann et al. (2001) for
a summary of the observational studies and to Dziembowski & Jerzykiewicz (1996)
for the first seismic study of this B Cephei star. This star is a very good target
for asteroseismology for the following reasons: it is a single-lined spectroscopic and an
eclipsing binary with well-known orbital elements, which helps to constrain the physical
parameters of the 5 Cep-type primary. Moreover, the primary exhibits multiperiodic
pulsations: 3 periods are observed with an extremely high precision. These periods
have been studied in quite some detail in the literature. However, general agreement
on the mode identification was never reached, so that the seismic application remained
limited.

We discuss now the observed characteristics of EN Lac. Concerning the effective tem-
perature, different values based on the same observations (Stromgren indices) but
with different calibrations were proposed in the literature. Jerzykiewicz & Sterken
(1980) derived the value log Teg = 4.357. while Shobbrook (1985) derived the value
log Tog = 4.333. With the same photometric data, Dziembowski & Jerzykiewicz (1996)
nsed more recent calibrations of Napiwotzski et al. (1993) and Balona (1994) and de-
rived the values log Tog = 4.358 and 4.351, respectively. The three observed frequencies
used in our study were taken from Lehmann et al. (2001) and the photometric ampli-
tudes obtained with Johnson filters were derived by Jerzykiewicz (1993), a summary
of these observations is given in Table 4.1.

Table 4.1: Ohserved frequencies and photometric amplitudes of EN Lac

Frequency in  Photometric amplitudes in Johnson filters
cycles / day Ay Ap Ay
vy = 59112 33.6 0.5 20.0 £ 0.17 179 £ 0.17

+
vy = 58551 129 £ 05 101 % 0.17 9.7 + 0.17
vy = 55033 149 = 0.5 11.2 £ 016 105 %= 0.17

!
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ie 4.2:

Model 1a
M/Mz = 9.4
log g = 3.8429
X =07

T = 22105K
R/R. = 6.0813
7 = 0.015

log(L/Ls) = 3.8992
age (My) = 16.2

no overshooting

Model 1b
MMz = 9.7
log g = 3.8494
X=07

log(L/L:) = 3.9405
age (My) = 15.15

no overshooting

Model 2a
logg = 3.8421

T = 21756 K
R/R. = 6.1186

log(L/Ls=) = 3.8769
age (My) = 15.9

X =07 Z =0.02 no overshooting
Model 2b

M/M; =10  Tu =22491K  log(L/Ls) = 3.9442
logg = 3.8548 R/R. =6.1865 age (My) = 13.95
X =07 Z = 0.02 no overshooting

Model 3a
M/M:. =97
logg = 3.8454
X =07

T = 21646 K
R/R: = 61597
7 = 0.025

log(L/L.) = 3.8739
age (My) = 14.85

no overshooting

Model 3b
M/M: =10.3
logg = 3.8579
X=07

log(L/Ls) = 3.9532
age (My) = 12.9

no overshooting

i

Global characteristics of the theoretical models of EN Lac
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Figure 4.14: HR diagram with evolution tracks corresponding to the different 2
Cephei models used in Section 4.1.6. The labels “+” give the position of the 6 models
of Table 4.2, The left (resp. right) vertical line corresponds to the effective temperature
determination by Jerzykiewicz & Sterken (1980) (resp. Shobbrook (1985)).

Mode identification

We present firstly the results obtained for a model with solar metallicity and 9.5 M.
The global characteristics of this theoretical model are given in Table 4.2 (model 2a)
and are inside the observational error bars. The age of this model was chosen such
that the theoretical frequency of the fundamental radial mode is the closest to the
main observed frequency v; = 5.9112 ¢/d. We are going to confirm below this mode
identification.

The non-adiabatic effective temperature variations and phase-lags we obtained for dif-
ferent modes (£ =0, 1, 2, 3, 4) of this model are given in Figure 4.15 (the vertical lines
correspond to the 3 observed frequencies). The non-adiabatic results for the modes
with theoretical frequencies closest to the observed ones are given in Table 4.3. Using
these non-adiabatic results, we can compute the theoretical photometric amplitude ra-
tios and compare them to the observations, as illustrated in Figure 4.16 (top for the
first frequency, middle for the second frequency and bottom for the third frequency).
We give in Table 4.4, the discriminants defined by:

3 2
1 Ajpsn Ajob
¢ 2 ijz !:Alé,th Aiobs | (4.4

where Ajge 18 the theoretical amplitude in the filter j (j = 1,2,3 for the Johnson
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filters U, B and V, respectively) with the spherical degree £ and A;qs is the observed
amplitude in the filter j.

We see that, for the first frequency vy = 5.9112 ¢/d, the best agreement between theory
and observations corresponds to the radial mode. The observed amplitude ratios of
the second frequency v, = 5.8551 ¢/d are situated between the theoretical amplitude
ratios of an £ = 1 mode and an £ = 2 mode, with a small preference for the £ = 2
mode (see the discriminants in Table 4.4). And finally, the last frequency v3 = 5.5033
c/d is identified as an £ = 1 mode. Our photometric mode identifications are in very
good agreement with the spectroscopic mode identifications performed by Aerts et al.
(2003b and 2003c). By comparing the theoretical frequencies to the observations, no
doubt is left about the identification of the second frequency rg: it is the £ = 2, ¢
mode. Moreover, the frequencies of the fundamental radial mode and of the £ = 2,
g1 mode follow a close parallel track when the star evolves (see Figure 4.8) and the
difference between them is not much affected by changes of the model, so that the
mode identification of 15 is not model dependent.
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Figure 4.15: Non-adiabatic effective temperature variations and phase-lags for dif-
ferent modes of a 9.5 Mg model with solar metallicity (Table 4.2, model 2a). At the
left: Amplitude of local effective temperature variations fr = |67 /Tes| (6:/R =1 at
the photosphere), as function of the frequency in cycles/day. At the right: Phase-lag
Ur = Y (6Twg/Tog) — V(& /R) in degrees. The “4” correspond to £ = 0 modes, the “x”
correspond o £ = 1 modes. the “x” correspond to £ = 2 modes, the “[1” to £ = 3 modes
and the - to £ = 4 modes.
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Figure 4.16: Theoretical and observed amplitude ratios obtained with Johnson pho-
tometry for the 5 Cephei star EN Lac (9.5 M model with solar metallicity). The top,
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The error bars with labels f; correspond to the observed amplitude ratios. The lines
correspond to our theoretical predictions for different degrees £.
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Table 4.3: Non-adiabatic results for the star EN Lac (9.5 Mg model with solar metal-
licity). Observed frequency in ¢/d, theoretical frequency in c/d, degree £, radial order,
theoretical amplitude of local effective temperature variation fr and phase-lag ¢ for
the modes with theoretical frequencies closest to the observed frequency. The identified
modes are given in bold.
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5.9112
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(o8]

Vth

5.90252
5.58425
5.84626
6.04394
6.10774

5.90252
5.58425
5.84626
6.04394
6.10774

5.90252
5.58425
5.84626
5.15273
5.43116
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2.0754
1.9551
2.0937
2.2193
2.2986

2.0754
1.9551
2.0937
2.2193
2.2986

2.0754
1.9551
2.0937
1.8571
2.0249

Yr (°)
180.3
178.1
180.0
181.2
181.5

180.3
178.1
180.0
181.2
1815

180.3
178.1
180.0
175.7
17T

Table 4.4: Least square discriminants H; (see Eq. (4.4)) for the different observed
frequencies and the different degrees £. In the first column: frequency in cycles:day.
In the other columns: H, for the different degrees ¢. The identified degrees are given

in bold.

Vobs

5.9112
5.8551
5.5033

=0

0.0454
0.2489
0.2090

/=1 {=2
0.1405  0.2519

£=3
0.1072

0.0640  0.0482 0.2988

0.0240 0.0875

0.2589

=4

0.4004
0.1963
0.2361
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Constraints on the metallicity

We can see in Figure 4.16 (top) that the theoretical amplitude ratios of the funda-
mental radial mode are outside the error bars of the cbservations. We examined if the
agreement could be improved by changing slightly the metallicity of the models. For
this purpose, we computed six stellar models with different metallicities (their global
characteristics are given in Table 4.2). The choice of the models has been made with
the following procedure. We computed models with 3 different metallicities: 7 = 0.015,

= (.02 and Z = 0.025. Because of the uncertainties in the calibration of the effec-
tive temperature of EN Lac (see Jerzykiewicz & Sterken 1980, Shobbrook 1985 aund
Dziembowski & Jerzykiewicz 1996), we computed for each metallicities two evolution
tracks corresponding to two different masses {in what follows, the label o will denote
the less massive models and the label b the more massive models). And for each evo-
lution tracks, we selected the model giving the best agreement between the two first
theoretical and observed frequencies, relying on the unambiguous mode identification
presented in the previous paragraph. We note that for each evolution track, we were
able to find a model giving a good agreement between theory and observation for the
first two frequencies (radial mode and ¢ = 2 mode), because these frequencies follow
parallel tracks when the star evolves. We note also that the line-profile variations show
clearly that the azimuthal order m = 0 for the £ = 2 mode (Aerts et al. 2003b and
2003¢), so that the rotational splitting has not to be taken into account for this mode.
The third frequency (£ = 1 mode) is undergoing an avoided crossing, and we did not
use it for the selection of the model (we note that the azimuthal order m is not known
for this frequency).

In Figure 4.17, we present the values of fr (local effective temperature variation for a
normalized radial displacement at the photosphere) as a function of the pulsation fre-
quency in cd™!, for different modes and for the six models of EN Lac given in Table 4.2.
The three vertical lines correspond to the three observed frequencies. We see that, the
higher the metallicity, the lower the amplitude of the local effective temperature vari-
ation for a normalized radial displacement. The physical origin of this phenomenon
is explained in Figure 4.18, where we show the amplitudes of the luminosity variation
[0L/L] as a function of the logarithm of temperature, from the center to the surface
of the star, for the radial fundamental mode and for the models 1a, 2a and 3a of Ta-
ble 4.2. The higher the metallicity, the more efficient the x-mechanism in the metal
opacity bump, which implies a more important decrease of the luminosity variation
in the driving region. Therefore, the amplitude of the luminosity variation and of the
local effective temperature variation at the photoshere are smaller for a normalized
displacement. By comparing in Figure 4.17 the results obtained for the slightly colder
models (models 1a, 2a and 3a) and the slightly hotter models (models 1b, 2b and 3b).
we see that changing the values of T within the observational error bars for EN Lac
(keeping the metallicity constant) has only a very small effect on the non-adiabatic
results.

We present in Figure 4.19 the theoretical amplitude ratios obtained for the models 1a,
2a and 3a (Table 4.2) of EN Lac with different metallicities and for the radial mode.
We see that the model with Z = 0.015 gives the best agreement between the theoretical
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and observed amplitude ratios. As can be seen in Figure 4.10, all the modes in the
observed range of frequencies remain unstable for this low metallicity; lower values are
not compatible with mode excitation.

Otir non-adiabatic functions can thus be used as a constraint on the metallicity of
stars driven by the metal opacity bump (8 Cephei and Slowly Pulsating B stars), once
we know the identification of the mode. We have seen in Figure 4.17 that the non-
adiabatic predictions and thus the theoretical amplitude ratios are little affected by
the uncertainties on Tog for a given metallicity, so that the constraints we derived on
the metallicity are reliable. This way of determining the metallicity may even turn out
to be more precise than the classical method based on the analysis of the spectrum
(the number of spectral lines is small in hot stars). We plan to validate our method to
derive the metallicity by this feed-back process by confronting our predictions to those
of B Cephei stars for which the metallicity is known with high accuracy.

2.6 o
2.4t
Ik |
2.2 F .
= :gu °
o .
2 L
1.87¢ 2=0.015 a
2=0.015 b
2=0.020 a
1.6¢ =0.020 b
=0.025 a
7=0.025 b
1.4 :

5 5.2 5.4 5.6 5.8 6 6.26.46.606.8
frequency (c/d)

Figure 4.17: fr (local effective temperature variation for a normalized radial displace-
ment at the photosphere) as function of the pulsation frequency in cd™!, for different
modes (0 < ¢ < 2) and for the six different models of the star EN Lac given in
Table 4.2. Fach “x” correspond to a mode of the model la, the “4” correspond to
the model 1b. the full and empty squares correspond to the models 2a and 2b respec-
tively, the full and empty circles correspond to the models 3a and 3b respectively. The
three vertical lines correspond to the three observed frequencies: vy = 59112 cd™,
ve = 5.8551 cd™t and vs = 5.5033 cd L.
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Figure 4.18: Amplitude of huninosity variation [6L/L] as function of the logarithm
of temperature for the fundamental radial mode, for models of EN Lac with different
metallicities (models la, 2a and 3a of Table 4.2). The solid line corresponds to the
model with Z = 0.015. the dashed line to the model with Z = 0.02 and the dotted line
to the model with Z = 0.025.
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Figure 4.19: Observed and theoretical amplitude ratios (Johnson photometry) for
the radial fundamental mode obtained for the three models of EN Lac with different
metallicities {models 1la, 2a and 3a of Table 4.2). The solid line corresponds to the
model with Z = 0.015, the dashed line to the model with Z = 0.02 and the dotted line
to the model with Z = 0.025.
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4.1.7 Non-adiabatic spectroscopic observables in § Cephei stars

As presented in Section 3.3, another utility of our non-adiabatic code is that it gives the
ingredients for determining the influence of the photospheric temperature variations on
the line-profile variations. The results presented in this section were the fruit of a close
collaboration with Joris De Ridder of the K-U Leuven and have been published in De
Ridder. Dupret et al. (2002).

Si?* line formation layer

We said in Section 3.3.1 that we adopt also the one-layer approximation in our simula-
tions of line-profile time series. It is important to note that the single surface we adopt
for our spectroscopic simulations is not at the same depth as the single photosphere
we adopted for the photometric simulations in Section 4.1.6. The reason is that the
layer which contributes most to the flux line depression is generally situated in much
outer layers than the photosphele In the case of 8 Cephei stars, the line we chose for
our simulations is the Si27¥ triplet (456.784 nm) On the basis of a method proposed
by Magain (1986). De Ridder et al. (9007) showed that the layer which contributes
most to the flux line depression of the Si*™ triplet is situated at log7 = —1.625 for a
typical 8 Cephei atmosphere. In order to avoid confusion, we use here the following
notations for the non-adiabatic amplitudes at the Si*T line formation layer: frge+ is
the amplitude of local effective temperature variation and f g2+ is the amphtude of
local effective gravity variation for a normalized radial displacement at the Si** line
formation layer (logr = —1.625).

Model and non-adiabatic quantities

The global characteristics of the 7 Cephei model we used for our line-profile simula-
tions are given in table 4.5. On the basis of this model, we performed non-adiabatic
simulations for different low-order p-modes. The non-adiabatic results are given in
Table 4.6.

Table 4.5: Global characteristics of the 5 Cephel model used for the simulations of
line-profile variations

M/M. =10 T =22643K log(L/Lz) =4.05
logg =3.76 R/R, =693 age (My) = 18.58
X =07 Z =002 no overshooting
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mode K frses ¥ feser ¥y P (h)
=1 p, 005 293 179° 21.0 180° 3.56
= P, 0.04 3.26 187° 26.7 180° 3.09
=1 p, 0.03 3.54 195° 333 180° 271

= f 0.04 . 3.27 186° 264 180° 3.11
{=2 p, 0.03 343 191° 30.2 180° 2.87
=2 p, 0.02 3.62 199° 36.7 180° 2.55
{=2 p, 0.02 .3.66 212 475 180°  2.17
£=3 f 0.03 343 190° 284 180° 2.92
£=3 p, 0.02 3.69 203> 39.8 180° 243
{=3 p, 0.02 371 209° 450 180° 2.24
£=3 p, 0.02 3.59 216° 511 180° 2.06
t=4 f 0.03 3.59 185° 333 180> 2.71
{=4 p 0.02 3.72 205° 424 180° 2.33
£=4 p, g.01 350 219° 5338 180° 1.99

Table 4.6: K = |6,/ |, free+, ¥r, fyse+ and 9, as computed by our non-adiabatic
code, for different modes of the 10 M, S Cephei model of Table 4.5. The non-adiabatic
amplitudes are determined at the line-formation layer of the Si** spectral line (456.78
nm) situated at log7 = —1.625, with a relative radial displacement &./r = 1 at this
layer. The last column contains the pulsation periods in hours.
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Simulations of line-profile variations

The simulations of line-profile variations presented in this section have been performed
with the code PULSTAR written by Dr. J. De Ridder, for the modes given in Table
4.6 and for all the values of m between 0 and ¢, which means 49 different modes. The
rotation was neglected in these simulations.

In our simulations of line-profile variations, we have imposed that the maximum over
the entire stellar surface of the amplitude of the local velocity variation ({({7])max) 18
20 km/s for every mode. The amplitudes of the observed radial velocity variations
(v} (first moment of the line profile variation integrated over the entire stellar disk)
of the modes with degrees £ = 1, 2, 3, and 4 are then respectively about 11 km/s, 7
km/s, 3 km/s and 0.5 km/s. This decrease of (v) with increasing £ comes from the
cancellations occuring for large £ when we integrate over the entire stellar disk. With
these values, the maximum amplitude of the local relative displacement ({5 Dax/ R was
always smaller than 1%. Most of the spectroscopically observed non-radially pulsating
8 Cepliel stars have an amplitude of (v) smaller than 11 km/s, so that our choice for

([U})max was appropriate.

A first result of the simulations is that — with the realistic amplitudes given above —
the non-adiabatic temperature and gravity variations have very small effect on the line
profiles. The relative difference in residual intensity between a line profile computed
with and without effective temperature and gravity variations is always about 1% or
less. An illustration of this is given in Figure 4.20. It shows line profiles without
and with effective temperature and gravity variations for the p,-mode of the 8 Cephei
star model, with (£,m) = (1,0) and an inclination angle of least cancellation (these
inclination angles are such that the amplitude of the observed radial velocity variation
{v) integrated over the visible disk is the largest for a given value of the equatorial
velocity, see De Ridder 2001, Sect. 3.4 for more details). The differences between the
two sets of line profiles for this mode are larger than for a typical mode, but they are
still very small. In Figure 4.21 we show greyscale diagrams of the difference in residual
intensity between the spectra computed with and without temperature, gravity, and
swrface normal variations, for the p,-modes (£,m) = (1,0) and (¢, m) = (1,1). The
abscissa corresponds to the wavelength in nanometer, and the ordinate corresponds to
the pulsation phase. The input parameters are the same as mentioned above, with
an inclination angle of least cancellation. The greyscale plots can be understood as
follows. For the (¢,m) = (1,0) mode (upper panel), we look pole-on so that we only
see the northern hemisphere. We recall that, for £ = 1 modes, there is no geometrical
distorsion of the stellar surface (it remains spherical with a constant radius). In this case
{(m = 0), the stellar surface follows, in appearance, a simple oscillating movement along
the direction of the observer. At phase zero, the northern hemisphere is maximally
expanded, the velocity is everywhere equal to zero and there is no Doppler shift due
to the pulsation. At the same time the local T.g, and therefore also the local EW,
is everywhere lower than the equilibrium value. This results in a spectral line with
at each wavelength a higher residual intensity than its counterpart computed without
temperature effects. At phase 0.5, the situation is reversed. The northern hemisphere
is now maximally compressed so that the local EW is everywhere higher than the
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equilibrium value which results in a spectral line with a lower residual intensity. For
the (£.m) = (1.1) mode (lower panel), we look equator-on. Now the stellar surface
follows, in appearance, a revolution round the polar axis perpendicular to the direction
of the observer. At phase zero, the visible part of the star is the closest to the observer.
the nodal line of the radial displacement, and therefore also of §7,g, coincides with the
edge of the disk. The nodal line of the radial component of the pulsational velocity,
however, coincides then with the meridian. Half of the disk is receding from us, half of
the disk is approaching towards us. This averages out so that the observed spectral line
is centered around its laboratory wavelength. The entire visible disk is in expanded
state, so that the local Tie. and therefore also the local EW, is everywhere lower than
the equilibrium value. As for the (£.m) = (1,0) mode, this results in a spectral line
with a higher residual intensity for each wavelength. At phase 0.5, the situation is
exactly the reverse one.

By fitting. for each mode. the EW curve with a sine function in order to obtain its
amplitude and its phase difference with the velocity curve, we found that, in general. a
larger degree ¢ corresponds to a smaller amplitude of the EW variation, which can be
explained from surface cancellation effects. The largest EW variations are found for the
¢/ =1 modes (we recall that we did not consider here £ = 0 modes), with |§ EW/EW
of the order of maximum 2%. and secondly for £ = 2 modes with [0 EW/EW] of the
order of maximum 1%. The other modes show an EW variability below the current
detection level.

The causes of the global EW variations are in the first place the local Tog variations and
in the second place the local effective gravity variations. It was found that including
both T and log g variations results in a lower amplitude of the EW variation than
including only Tug variations. The reason is that the EW of the Si*™ (456.78 nm) line at
(T log g) = {22000 K. 4.0) increases with increasing Teg but decreases with increasing
g. We also recall that the importance of the effective gravity variation increases with
increasing radial order. as a simple consequence of the increasing acceleration.

We explicitly verified that the variation of the moments of the line profile are very little
affected by the T.g and logg variations. This means that line profile fitting, as well
as the moment method could not be confused by temperature and gravity variations
as far as mode identification is concerned (at least for slow rotators). Although the
moment method assumes a constant equivalent width. Aerts et al. (1992) showed that
the method is sufficiently robust to handle EW variations of a few percent.
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Figure 4.20: Comparison between line profiles without (solid lines) and with (dotted
lines) Tee and g variation, for the mode p, of a 10 Ms 3 Cephei model (Table 4.5),
with (£, m) = (1.0). The phase of each line profile is n/9 where (n) is given in the lower

left corner of each box. Figure taken from De Ridder (2001).
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Figure 4.21: Greyscale plots of the difference in residual intensity between the spectra
computed with and without temperature, gravity, and surface normal variations. White
indicates a positive difference, black a negative difference. Both panels are for the Si**
(456.784 nm) line and for the mode p, of a 10 M 3 Cephei model {Table 4.5). The
upper panel is for the (£,m) = (1,0) mode, the lower panel is for the (£, m) = (1.1)
mode. In both cases, the maximum relative difference in residual intensity is about
0.8%. Figure taken from De Ridder (2001).
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4.2 Slowly Pulsating B stars

4.2.1 SPBs from an observational point of view

The slowly pulsating B stars (SPBs) are multipericdic population I main sequence
stars with periods typically between 1 and 4 days. Their spectral types range from
B3 to B8, their masses from about 3 My to about 8 M. The SPBs have been very
recently discovered and were introduced as a new class of pulsating stars by Waelkens
(1991). Very few SPB stars were actually known until very recent times. The satellite
HIPPARCOS, however, spectacularly increased the number of known SPB stars by
almost an order of magnitude (Waelkens et al. 1998). By now, a little more than 100
stars are confirmed or suspected SPB stars. The most important reason for this huge
increase in number is the long pulsation period together with the even longer beat
periods, which makes it quite challenging to discover and study them from ground-
based datasets. Moreover, periods around 1 day are difficult to find from the ground
because of the daily aliasing effect. Slowly as well as rapidly rotating SPB stars have
been observed, but none with a magnetic field. A deep and very detailed observational
study of SPBs was achieved recently by Peter De Cat (2001) in the frame of his PhD
fhesis.

4.2.2 SPBs from a theoretical point of view

From a stellar evolution point of view, the SPBs are at the core hydrogen-burning stage,
between the Zero Age Main Sequence (ZAMS) and the Terminal Age Main Sequence
(TAMS). They have a large convection core, but no superficial convection zone is
present. The long periods of the SPBs correspond to high order g-mode pulsations.
As a consequence of these large periods, the transversal compression of the matter
is larger than the radial compression in high order g-modes: more precisely, the term
proportional to £(£+1) is dominating in the equation of mass conservation (Eqgs. (1.47)
and (2.3)). Because of this dominating transversal compression, we deduce also that
in the superficial layers and under the adiabatic approximation, dp/p and 6P/ P have
the same phase as the radial displacement (contrary to p-modes for which we have
an opposition of phase). Our non-adiabatic computations predict a small phase-lag
between the superficial temperature variation and the radial displacement, as will be
shown in Section 4.2.6.

We can see in Figure 4.1 the situation of SPB stars in a HR diagram (represented
with o). On the same figure, the theoretical instability strip derived by Pamyatnykh
(1999) is given. In Figure 4.22, we give the real part of the displacement in the radial
direction (R{&,/R}) and in the transversal direction (R{&,/R}) (the definition of &,
and &, are given in Eq. (1.45)), for the mode £ = 1 ga» of a typical 4 My SPB model
(the global characteristics of this model are given in Table 4.12). These eigenfunctions
are normalized in such a way that &, /R = 1 at the photosphere (z = 1). The vertical
line corresponds to the frontier between the central convection zone and the radiative
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Figure 4.22: Real part of the radial displacement: R{¢,/R} (top) and of the transver-
sal displacement: ®{&,/R} (bottom) as function of z = r/R for the mode £ = 1 gy of
a typical 4 Mg SPB model. The vertical line is the frontier between the core convection
zone and the radiative envelope.
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_envelope. We can see the large number of nodes and the oscillatory behaviour of these
eigenfunctions beginning at the frontier between the central convection zone and the
radiative envelope. We see also that the transversal displacement is much larger than
the radial displacement. Because of the significant amplitudes obtained in the internal
layers, the SPBs are very promising targets for asteroseismology.

4.2.3 Driving mechanism of the SPBs

As proposed by Dziembowski et al. (1993b) and Pamyatnykh (1999), the driving
mechanism at the base of the excitation of high order g-modes of SPBs is a k-mechanism
associated to the metal opacity bump, at temperatures around 200.000 K (log T" =~ 5.3).
In order to illustrate this phenomenon, we give the results obtained for a typical SPB
model whose global characteristics are given in Table 4.12. This model has the effective
temperature and luminosity of the SPB star HD 215573 observed by Peter De Cat
(2001). We have chosen the mode £ = 1 g3 whose theoretical period is close to the
observed period (Py, = 1.76188 days). '

In Figure 4.23, we give at the the top the opacity in em?/g as function of the logarithm
of temperature. We can see 3 bumps of opacity. The first bump at logT ~ 5.3 is due
to the tremendous number of iron lines in this region (Cox et al. 1992). This opacity
bump is very important since it is at the origin of the driving of SPB stars. A second
bump at logT = 4.6 corresponds to the second partial ionization zone of Helium.
And a third small bump at logT ~ 4.15 corresponds to the partial ionization zone
of Hydrogen and the first partial ionization zone of Helium. At the middle of Figure
4.23, we give the graph of the logarithmic derivative of the opacity with respect to the
pressure at constant entropy (Eq. (4.1)). As for 8 Cephei stars, the important point is
that g increases outwards in the driving region. Finally, we give at the bottom the
araph of the logarithm of the thermal relaxation time in seconds: log(7..), as function
of the logarithm of temperature. The horizontal dashed line with the label gqo gives
the logarithm of the period of pulsation of the mode £ = 1 g2 and the horizontal
dot-dashed line with the label p; gives the logarithm of the period of pulsation of the
mode ¢ =1 p;.

In Figure 4.24, we illustrate some results obtained for the mode £ = 1 g9 of the SPB
model given in Table 4.12. We give in the middle panel of this figure the graph of the
work integral, as defined in Eq. (4.2). The regions where W has a positive derivative
are driving the mode and the regions where W has a negative derivative are damping
the mode. In the top panel of Figure 4.24, we give —dW/dlogT. The regions where
—dW/dlog T is positive are driving the mode and the regions where —dW/dlogT is
negative are damping the mode. Finally, we give at the bottom of Figure 4.24, the
graph of the relative amplitude of variation of the “local” luminosity defined by:

lé_L} _ 15(47rr2ﬂ) ’ (45)

L L

where F, is the local radial flux.
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Figure 4.23: Opacity in em?/g (top), kps = glﬁ% A (middle) and logarithm of the

thermal relaxation time in seconds: log(r,,) (bottom), as function of the logarithm of
temperature. for a typical 4 M, SPB model.
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The driving mechanism of SPBs is very similar to the one of 8 Cephei stars. The
transition region where the thermal relaxation time is of the same order as the period of
pulsation (bottom of Figure 4.23, intersection with the horizontal dashed line with label
g22) 1s exactly situated at the metal opacity bump where x5 is increasing outwards.
This opacity barrier is blocking the luminosity variation at the hot phase, which is
driving the mode. Since the explanation of this process is exactly the same as for
Cephei stars, we refer to Section 4.1.3 for more details.

In order o show that this driving mechanism affects high order g-modes but not p-
modes (for SPBs), we give in Figure 4.25 the results obtained for the mode £ = 1 py
of our 4Mg SPB model. The explanation of the stability of the SPB’s p-modes is the
following. For p-modes (smaller periods), the transition region where the period is of
the same order as the thermal relaxation time is situated in more outside layers (Figure
4.23, bottom). In a non negligible part of this region, xps (Figure 4.23, middle) and
thus 6k /k is decreasing outwards at the hot phase. And therefore dL/L is increasing
outwards at the hot phase (around logT = 5.1 in Figure 4.25, bottom), which has a
damping effect on the pulsation (Figure 4.25, top and middle).

In Figures 4.26, 4.27 and 4.28, we give all the unstable modes found by our non-
adiabatic code along a sequence of evolution of 4, (an HR diagram with this evolution
track and other ones is given in Figure 4.31). Each figure corresponds to a given degree
¢. The abscissa corresponds to the age of the models and a scale with the logarithm
of effective temperature is given at the top. Each cross corresponds to an unstable
mode. The upper figures give the radial orders of the unstable g-modes and the lower
figures give the periods of the unstable modes in days. These theoretical results are
in good agreement with the typical observed periods of SPBs (De Cat 2001). On one
hand, by comparing the results obtained for different degrees £, we see that the periods
and the interval of periods of the set of unstable modes decrease with increasing L
On the other hand, by comparing the results obtained for different ages (same £), we
see that the periods and the interval of periods of the set of unstable modes increase
with increasing age. Finally we remark that, for all the models between the ZAMS
and the TAMS, unstable high-order g-modes are predicted by our non-adiabatic code,
in agreement with Pamyatnykh (1999).
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Figure 4.26: Unstable modes of degree £ = 1 along a 4My sequence of evolution.
The upper graph gives the radial order of the unstable g-modes as function of the age
in Myears and of log(Teg). The lower graph gives the period of the unstable modes in
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Figure 4.27: Unstable modes of degree ¢ = 2 along a 4M. sequence of evolution.
The upper graph gives the radial order of the unstable g-modes as function of the age
in Myears and of log(T.g). The lower graph gives the period of the unstable modes in
days.
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Figure 4.28: Unstable modes of degree £ = 3 along a 4M sequence of evolution.
The upper graph gives the radial order of the unstable g-modes as function of the age
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4.2.4 Comparison between adiabatic and non-adiabatic eigen-
functions

35 T T T T T T T T

30

25

20

_5 1. i ] i 1 1 1 L
75 7 6.5 6 55 5 45 4 35
log T

Figure 4.29: Real part of the Lagrangian variation of the temperature 67/T as com-
puted by our non-adiabatic code (solid line with the label dT) compared to the adia-
batic Lagrangian variation of the temperature 67 /T |yq = (s —1)/I'1 0P/ Plaq (dashed
line with the label dT,4). as function of the logarithm of temperature, from the center
to the surface of the star.

We compare now the adiabatic and non-adiabatic eigenfunctions obtained for a typical
4 M., SPB model whose global characteristics are given in Table 4.12, and for the mode
# = 1. goo. In Figure 4.29, we compare the real part of the Lagrangian variation of the
temperature §7/T as computed by our non-adiabatic code (solid line) to the adiabatic
Lagrangian variation of the temperature (dashed line) defined by Eq. (4.3). We recall
that &./R =1 at the photosphere.

We see that in the quasi-adiabatic region (from the center to log7 ~ 5.5), the non-
adiabatic and the adiabatic temperature variations are the same. On the contrary, from
the driving region to the superficial layers, the pulsation becomes highly non-adiabatic
and the non-adiabatic and adiabatic temperature variations are totally different. The
qualitative behaviour of the eigenfunctions of Figure 4.29 has the same physical expla-
nation as for 4 Cephei stars (see Section 4.1.4): the two bumps of the non-adiabatic
temperature variation correspond exactly to the two bumps of opacity (Figure 4.23,
top) and the the adiabatic temperature variation is scaled on the adiabatic gradient
(T3 — 1)/I"; in the superficial layers.
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4.2.5 Non-adiabatic eigenfunctions in the atmosphere of SPBs

Similarly to Section 4.1.5. we illustrate now in Figure 4.30 some of the results ob-
tained in the atmosphere of a typical SPB star (same model and same mode as in
Section 4.2.4). For all our applications to SPBs, the connecting layer between the
interior and atmosphere specific treatments (Chapter 2) was chosen at + = 10. We
note the smoothness of |67 /7] (label “dT") at log T = 1, confirming the validity of our
treatment. We do not give [0InT/91n ge 090/ gel, because it turns out to be totally neg-
ligible. As for 8 Cephei stars {Figure 4.13), the term |0 InT/01n7 (07/7)] (label (3})
is large, so that the Lagrangian variation of the temperature |67/ and the variation
of the temperature at constant optical depth |AT/T| =~ |0InT/0nTer (6Twr/Tes)]
(label (1)) are two totally different cuantities. We note that, because of the signifi-
cant values of d1luT/81n T in the outermost layers of the Kurucz atmosphere models.
[0InT/0n7 (67/7)] does not go to zero at the outermost layer. Finally. we see that
0T /T and |67/ Tege] (label *dTe”) are very different at the photosphere. So that it
is inappropriate to replace [0Teg/Terr| by [07/7| in the flux boundary condition. We
recall that £, /R = 1 at the photosphere.
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Figure 4.30: Amplitude of Lagrangian temperature variation {67/T] (solid line with
the label *dT"), amplitude of local effective temperature variation [07Ts/Tog] (dot-
dashed line with the label “dTe") and moduli of the first and last terms of the right-
hand side of Eq. (2.32). The dashed line with the label *(1)” is the modulus of the
first term (o< 6Tog/Tesr), the dotted line with the label “(3)” is the modulus of the third
term (o é7/7), the vertical line corresponds to the photosphere where T = T.¢. The
functions were computed for the mode £ = 1, gqy, in the atmosphere of a 4 M, SPB
model (see Table 4.12).
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4.2.6 Non-adiabatic photometric observables in SPBs

As presented in Section 3.2, multi-colour photometric observations can be confronted
to-the theoretical predictions of our non-adiabatic code. We have shown that this
confrontation can be used as a tool for mode identification. In this Section, we present
the results obtained for 3 Slowly Pulsating B stars observed by Peter De Cat with
Geneva photometry {De Cat 2001). In the original version of this text, the applications
to 8 additional SPBs are also presented (HD 74195, HD 123515. HD 53921, HD 140873.
HD 74560, HD 24587, HD 177863 and HD 181558). see the prefatory note at the
beginning of this thesis. Using the calibrations of Kiinzli et al. (1997). De Cat (2001)
determined the effective temperature and gravity of these SPBs. Even for the binary
stars of this sample, there are no reliable observational constraints on their mass.
For the chemical composition also, there are no precise observational constraints. We
determined thus the theoretical stellar models as follows. We adopted a solar chemical
composition for each models, with X = 0.7 and Z = 0.02, and we put no overshooting.
For each star, we chose then appropriately the mass so that the evolution track goes
the closest to the observed effective temperature and gravity and we selected the model
closest to these values. And finally, for each models, we have performed non-adiabatic
computations and photometric mode identifications of the dominant pulsation modes.

We give in Figure 4.31, HR diagrams with the evolution tracks computed with the
Code Liégeois d’Evolution Stellaire (CLES). Observational error boxes corresponding
to each stars are also given in this figure. In Table 4.7, we give in the first column the
names of the stars. In the second column, we give the observed effective temperatures
with error bars: in the third column, we give the observed gravities with error bars and
in the last column. we give the masses we have adopted for each of the 3 SPBs.

Since the phase-lags are close to zero. a mode identification method based on amplitude
ratios is adapted. Dr. De Ridder improved the initial code of Heynderickx et al. {1994)
in order to take our non-adiabatic predictions into account. We present now star by
star our non-adiabatic results and the photometric mode identification.
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Table 4.7: Names, observed effective temperatures, observed gravities, and adopted
masses of the 3 SPBs studied in Section 4.2.6

log (L/Lgy)

.90

.80

.70

.60

.50 F

.40

.30

.20

Name Terr logg M/ M

HD 26326 15210+ 110K 414 +0.14 45
HD 138764 14050 £ 80 K 420+ 0.12 3.9
HD 215573 13960 = 80K 4.09+£0.13 4

| 1 1 $ 3 1 1 1

.22 4.20 4.18 4.16 4.14 4.12 4.10 4.08 4.06 4.04

log <Teff)

Figure 4.31: HR diagrams with the evolution tracks and the observational error boxes
for the 3 SPBs studied in Section 4.2.8. The lower diagram is a zoom of the upper

diagram
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HD 26326

HD 26326 (GU Eridani) is a B5 IV star without known companion for which no Ha
emission is observed. Photometric variations were reported by Savage et. al (1985).
Using the photometric observations of the Hipparcos space mission, De Cat (2001) de-
tected two intrinsic frequencies: 1 = 0.5338 ¢/d and 1, = 0.1723 ¢/d. In spectroscopy,
these two frequencies were also detected. In the Geneva photometry, no evidence for
vy 1s found, and the best candidate for a second intrinsic frequency is v = 0.7629 ¢/d.
We consider here the results obtained for v, and vs.

Table 4.8: Global characteristics of the theoretical model of HD 26326

M/Mg =45 Tg=15208K log(L/Le) = 2.6218
logg =4.1501 R/Rg =2.9540 age (My) = 35.1

X =07 7 =002 no overshooting
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Figure 4.32: Non-adiabatic amplitudes and phase-lags for the star HD 26326. At the
left: Amplitude of local effective temperature variations fr = [6Tws/Ter| (§,/R =1 at
the photosphere). as function of the frequency in cycles/day. At the right: Phase-lag
Y = P{0Tes/Terr) — W(E,/R) in degrees. The “+” correspond to £ = 1 modes, the “x”
correspond to £ = 2 modes and the asterisks correspond to £ = 3 modes.

In Figure 4.32, we give some of the results obtained with our non-adiabatic code for
different modes of HD 26326.
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In Figures 4.33 and 4.34, we give the amplitude ratios obtained with Geneva photom-
etry for the frequencies v; = 0.5338 ¢/d and 13 = 0.7629 ¢/d. The black points with
error bars correspond to the observations. The lines correspond to the theoretical pre-
dictions for different degrees £: solid line for £ = 1, dashed line for £ = 2 and dot-dashed
line for £ = 3.

In table 4.9. the modes identified by the method of photometric amplitudes ave given
in bold.

Table 4.9: Non-adiabatic results and mode identification for the star HD 26326. Ob-
served frequency. degree £, radial order, theoretical amplitude of local effective temper-
ature variation fr and phase-lag ¢ for the modes with theoretical frequencies closest
to the observed frequency. The identified modes are given in bold.

Vs 4 Gn fr Y (O)
0.5338 1 U1 12.56 -—18.9
2 4937 28.16 2.3
3 Gs3 50.05 7.0
0.7629 1 15 571 —-31.6
2 g26 15.52 -16.3
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Figure 4.33: Amplitude ratios obtained with Geneva photometry for the first fre-
quency 1 = 0.5338 ¢,/d of the SPB star HD 26326. The black points with error bars
correspond to the observations. The lines correspond to the theoretical predictions for
different degrees ¢: solid line for ¢ = 1. daslied line for £ = 2 and dot-dashed line for
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Amplitude ratios obtained with Geneva photometry for the third fre-

quency vz = 0.7629 c,/d of the SPB star HD 26326. The black points with error bars
correspond to the observations. The lines correspond to the theoretical predictions for
different degrees ¢: solid line for £ = 1, dashed line for ¢ = 2 and dot-dashed line for

{=3.
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HD 138764

HD 138764 is a bright member of the Upper Scorpius subgroup of the Scorpio-Centaurus
OB-association (Sco OB2). It is listed in the “General Catalogue of Ap and Am stars”
{Renson et al. 1991) as a suspected Si star. De Cat (2001) was the first to report light
variations in optical photometry of this star. More precisely, he detected one frequency
vy = 0.7944 ¢/d with Geneva photometry. The global characteristics of the model we
have used for our non-adiabatic computations are given in table 4.10.

Table 4.10: Global characteristics of the theoretical model of HD 138764

M/ Mg =39

T = 14047K

logg = 4.1964 R/Ry = 2.6073

log(L/ L) = 2.3760

age (My) = 38

X =07 Z = 0.02 no overshooting
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Figure 4.35: Non-adiabatic amplitudes and phase-lags for the star HD 138764, At
the left: Amplitude of local effective temperature variations fr = |67z /Te] (/R =1
at the photosphere), as function of the frequency in cycles/day. At the right: Phase-lag
Y = Y(6Tew/Tex) — ¥(&,/R) in degrees. The “+” correspond to £ = 1 modes, the “x”
correspond to £ = 2 modes and the asterisks correspond to £ = 3 modes.

In Figure 4.35, we give some of the results obtained with our non-adiabatic code for
different modes of HD 138764.

In Figure 4.36, we give the amplitude ratios obtained with Geneva photometry for
the frequency vy = 0.7944 ¢/d. The black points with error bars correspond to the
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observations. The lines correspond to the theoretical predictions for different degrees
?: solid line for £ = 1, dashed line for £ = 2 and dot-dashed line for £ = 3.

In table 4.11, the mode identified by the method of photometric amplitudes is given in
bold.

Table 4.11: Non-adiabatic results and mode identification for the star HD 138764.
Observed frequency, degree £, radial order, theoretical amplitude of local effective tem-
perature variation fr and phase-lag vr for the modes with theoretical frequencies
closest to the observed frequency. The identified modes are given in bold.

Vobs 14 gn fT Q//}T (o)
0.7944 1 J16 5.59 -23.2
2 gas 17.23 -9.3
3 G40 31.57 1.4

0.8 -

350

400

1
450

500

Wavelength {nm)

Figure 4.36: Amplitude ratios obtained with Geneva photometry for the first fre-
quency v, = 0.7944 c/d of the SPB star HD 138764. The black points with error bars
correspond to the observations. The lines correspond to the theoretical predictions for
different degrees £: solid line for £ = 1, dashed line for £ = 2 and dot-dashed line for
£=3.
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HD 215573

Many abundance analyses of HD 215573 have been performed. Eggen (1977) was the
first to report upon the variability of this star, and De Cat (2001) was the first to
classify it as an SPB. One frequency has been detected by De Cat (2001) with Geneva
photometry: 1y = 0.5654 ¢/d. The global characteristics of the model we have used
for our non-adiabatic computations are given in table 4.12.

Table 4.12: Global characteristics of the theoretical model of HD 215573

MM, =4 Ter = 13955K  log(L/Ls) = 2.4532
logg=4.1187 R/R; = 2.8876 age (My) = 59.4

X =07 Z =002 no overshooting
£0 . — : . 15 . . : :
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Figure 4.37: Non-adiabatic amplitudes and phase-lags for the star HD 215573. At
the left: Amplitude of local effective temperature variations fr = 67w /Ter| (&,/R =1
at the photosphere), as function of the frequency in cycles/day. At the right: Phase-lag
Yr = P(6Tew /Togr) — W€ /R) in degrees. The “+7 correspond to £ = 1 modes, the “x”
correspond to £ = 2 modes and the asterisks correspond to £ = 3 modes.

In Figure 4.37, we give some of the results obtained with our non-adiabatic code for
different modes of HD 215573,

In Figure 4.38, we give the amplitude ratios obtained with Geneva photometry for
the frequency v; = 0.5654 ¢/d. The black points with error bars correspond to the
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observations. The lines correspond to the theoretical predictions for different degrees
Z: solid line for £ = 1, dashed line for £ = 2 and dot-dashed line for £ = 3.

In table 4.13, the mode identified by the method of photometric amplitudes is given in
bold.

Table 4.13: Non-adiabatic results and mode identification for the star HD 215573.
Observed frequency, degree £, radial order, theoretical amplitude of local effective tem-
perature variation fr and phase-lag #r for the modes with theoretical frequencies

closest to the observed frequency. The identified modes are given in bold.

Vobs 14 Gn ,fT /lr/)T (O)
0.5654 1 G232 8.97 -—-21.2
2 g39 23.94 -3.5
3 gs5 42.26 6.8

o

350 400 450 500 550

Wavelengta (nm)
Figure 4.38: Amplitude ratios obtained with Geneva photometry for the first fre-
quency v = 0.5654 ¢/d of the SPB star HD 215573. The black points with error bars
correspond to the observations. The lines correspond to the theoretical predictions for
different degrees £: solid line for ¢ = 1. dashed line for £ = 2 and dot-dashed line for
f =3
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4.2.7 Non-adiabatic spectroscopic observables in SPBs

As presented in Section 3.3, our non-adiabatic code permits to determine the influence
of the effective temperature variations on the line-profile variations. The results pre-
sented in this section were the fruit of a close collaboration with Joris De Ridder of
the K-U Leuven.

Si* line formation layer

We adopt the one-layer approximation in our simulations of line-profile time series of
SPBs. We recall that the single layer we adopt for our spectroscopic simulations is not
at the same depth as the single photosphere we adopted for the photometric simulations
in Section 4.2.6. In the case of SPBs, the line we chose for our simulations is the Sit
doublet {412.81 nm). De Ridder et al. (2002) showed that the layer which contributes
most to the flux line depression of the SiT doublet is situated at log 7 = —2 for a typical
SPB atmosphere. In order to avoid confusion, we use here the following notations for
the non-adiabatic amplitudes at the Si' line formation layer: fpg+ is the amplitude
of local effective temperature variation and f g+ is the amplitude of local effective
gravity variation for a normalized radial displacement at the Sit line formation layer
(logT = —2).

Model and non-adiabatic guantities

The global characteristics of the SPB model we used for our line-profile simulations are
given in table 4.14. On the basis of this model, we performed non-adiabatic simulations
for different high-order g-modes. The non-adiabatic results are given in Table 4.15.

Table 4.14: Global characteristics of the SPB model used for the simulations of line-
profile variations

M/Mg=35 Teg=15190K log(L/Le)=2.88
logg =393 R/Ry =400 age (My) = 59.07
X =07 Z = 0.02 no overshooting

Simulations of line-profile variations

The simulations of line-profile variations have been performed with the code PULSTAR
written by Dr. De Ridder, for the modes given in Table 4.15 and for all the values of m
between 0 and £, which means 59 different modes. The rotation was neglected in these

391



mode K fre+ Y0 fia+ ¥, P (h)

¢=1 g, 175 362 319° 200 180° 41.36
£=1 g, 246 568 327° 195 180° 48.82
=1 g, 361 854 336° 1.80 180° 53.73
£=1 g, 500 11.2 343° 186 180° 68.31
¢=1 g, 667 13.6 349° 179 180° 78.38
(=1 g, 861 154 354° 173 180° 88.11
=1 g, 108 169 357° 1.66 180° 97.85

=2 g, 129 694 320° 195 180° 35.03
(=2 g, 179 989 337° 188 180° 40.86

=92 g, 232 124 343° 181 180° 46.18
=2 g, 303 148 349° 1.74 180° 52.11
=2 g, 383 168 353° 168 180° 57.86
¢=2 g, 470 184 357° 161 180° 63.23
=2 g, 583 109 0° 153 180° 69.24
(=3 g, 116 107 339° 1.87 180° 32.71
0=3 g, 152 135 345° 179 180° 36.88
f=3 g, 192 158 350° 171 180° 40.96
/=3 g, 236 178 354° 163 180° 44.75
f=3 g, 202 196 358° 155 180° 48.98
£=3 g, 357 212 0° 145 180° 53.15

Table 4.15: K = [§,/& ], fret, ¥r, fys+ and 4y, as computed by our non-adiabatic
code, for different modes of the SPB stellar model of Table 4.14. The non-adiabatic
amplitudes are determined at the line-formation layer of the Si* spectral line (412.81
nm) situated at log 7 = —~2.0, with a relative radial displacement &,/r = 1 at this layer.
The last column contains the pulsation periods in hours.
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simulations. The inclination angle was always chosen as an angle of least cancellation
for the results presented in this Section.

In our simulations of line-profile variations, we have imposed that the maximum over
the entirestellar surface of the amplitude of the relative displacement ( ;{;)max /R is
10% for every mode. "This led to amplitudes of (v) (first moment of the line profile
variation integrated over the entive stellar disk) between 1.5 km/s and 6.5 km /s, This
can be compared with the largest amplitude of (v) ever observed for an SPB: 6.7 km/s
for HD 181558 (De Cal 2001). With these values, the maximum amplitude of the local

pulsation velocity variation (|¥])max ranged from 5 km/s to 15 km/s.

With the amplitudes given above, the non-adiabatic temperature and gravity variations
deduced from Table 4.15 have a very small effect on the line profiles. The relative
difference between the line profiles computed with and without non-adiabatic effects
are about 1% or-lower. In Figure 4.39, we show greyscale diagrams of the difference
in residual:intensity between the spectra computed with and without temperature.
gravity, and surface normal variations. These diagrams were computed for the Si™
(412.8054 nin) line and for the g, -mode with (£,m) = (2,2) (upper panel) and (¢, m) =
(2,1) (lower panel). The interplay between the different sectors and zones now causes
a more complex pattern. Parts of the spectral line have a higher residual intensity
while other parts have a lower residual intensity than the corresponding spectral line
computed without temperature effects.

For all our simulations, the largest EW variations were found for the £ = 1 modes, with
|6 EW/EW] of the order of maximum 2% (even for the modes of highest radial order n.
which have a rather large fr g+ value). The cancellation effects are thus as important
for the EW variation as for the (v) variation. For SPB high-order g-modes, the gravity
variation is very small and does not play a significant role in the EW wvariation, so
that the latter is mainly caused by the Toy variation. As a consequence, the predicted
non-adiabatic phase difference between the EW and the (v) curve is very close to the
non-adiabatic phase difference between the local effective temperature variation and
the local pulsation velocity variation.

Neither the line profile variations nor the moments of the lines are significantly af-
fected by the inclusion of non-adiabatic temperature variations. Modelling the line
profile variations of the silicon lines with the velocity field only, is thervefore a good
approximation for the SPB stars.

The surface normal variation played only a minor role compared to the velocity and
temperature variations. The deviation of the surface normal from the local radial
vector was never much more than a few degrees.
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Figure 4.39: Greyscale plots of the difference in residual intensity between the spectra
computed with and without temperature, gravity, and surface normal variations. White
indicates a positive difference, black a negative difference. Both panels are for the Si™
(412.8054 nm) line, for the mode g,, of the 5 My SPB model of Table 4.14. The upper
panel is for the (£,m) = (2,2) mode, the lower panel is for the (¢,m) = (2.1) mode. In
oth cases. the maximum relative difference in residual intensity is about 0.6%. Figure
taken from De Ridder (2001).



4.3 ¢ Scuti stars

4.3.1 § Scuti stars from an observational point of view

d Scuti stars are pulsating stars with masses between 1.5 M, and 2.5 M. Their
pulsation periods go from 0.5 to 6 hours. Their spectral types range from A2 to FO
on the main sequence and from A3 to F5 at luminosity class [II (Kurtz 2000). Most
of the § Scuti stars are moderate to fast rotators with v sin ¢ up to 200, even 250 km
st In their catalogue of § Scuti and related stars, Rodriguez et al. (2000} list more
than 600 stars with amplitudes up to a few hundreds of a milli-magnitude. Only about
50% of the stars in the § Scuti instability strip are found to be photometrically variable
(Breger 2000), but since the number of confirmed pulsators increases steeply towards
low amplitudes (Gautschy & Saio 1996), one can expect many variables to pulsate with
an amplitude below the current detection level. For some 0 Scuti stars, more than 20
oscillation modes have been detected; typical examples are FG Vir with 24 frequencies
(Breger, Zima et al. 1998), 4 Canum Venaticorum with more than 30 frequencies
(Breger, Handler et al. 1999) and BI CMi with 29 frequencies (Breger, Garrido et al.
2002). § Scuti stars with slowly changing pulsation periods have been observed, but
cannot always be explained by invoking evolutionary effects (Breger & Pamyatnykh
1998). The latter authors discuss non-linear mode interaction as the possible main
cause of non-evolutionary period changes.

4.3.2 § Scuti stars from a theoretical point of view

The § Scuti stars are near main sequence variable stars either core hydrogen-burning or
shell hydrogen-burning. During their evolution on the main sequence, a large convective
core develops, which later shrinks leaving behind a gradient in mean molecular weight.
Overshooting is expected at the end of the convective core, constraints imposed by 2 M,
eclipsing binaries yield a value of ay = Are/H, = 0.17 £ 0.05 (Ribas et al. 2000).
Two very thin superficial convection zones are present, they are due to the opacity
bumps in the He™, He and H partial ionization zones (see Figures 4.54 (top) and 4.58).
The rotation can induce mixing of chemicals and affects the evolution (Maeder 1999).
The typical periods of pulsation of the ¢ Scuti point towards low order p and g-modes.
The oscillations arve driven by the k-y-mechanism acting in the He™ = He™™ (Hell)
partial ionization zone, as will be explained in Section 4.3.3. We note that, compared
to the observations, an order of magnitude more unstable modes are predicted by
the linear theory (e.g. Bradley & Guzik 2000). It is not yet clear what mechanisms
explain the observed amplitude distributions and the modal selections, but non-linear
mode interaction has been suggested as a possible candidate. The effect of rotation
on pulsation can be important for fast rotators, treatments up to the cubic order have
been proposed by Soufi et al. (1998). Mixing between p and g-modes and avoided
crossings are frequent in 4 Scuti stars (see Figures 4.46, 4.47 and 4.48).
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Figure 4.40: Position of the § scuti stars in a HR diagram and theoretical blue edges
of the instability domain of the ¢ Scuti stars for radial oscillations, as computed by
Pamyatnykh (2000). The ZAMS and some evolution tracks are shown. Figure taken
from Pamyatuykh (2000).

i

4.3.3 Driving mechanism of the ¢ Scuti stars

The driving mechanism of the § Scuti is the classical k~y-mechanism acting in the Hell
partial ionization zone. The same mechanism explains the variability of the RR Lyrae
and § Cephei stars in the “classical” instability strip {see Figure 1).

In order to illustrate this mechanism. we begin by giving some equilibrium characteris-
tics of a typical ¢ Scuti model in Figure 4.41. The global characteristics of this model
are given in Table 4.16 (model 2). The shape of the different physical quantities given
in Figure 4.41 is modeled by the different partial ionization zones. The partial ioniza-
tion zone of metals is at the origin of the small bump of opacity at logT =~ 5.3 {top of
Figure 4.41). The Hell partial ionization zone is at the origin of the second bump of
opacity at log T =~ 4.6. This partial ionization zone affects also the adiabatic gradient
('3 —1)/T'; (graph with the label Tpg). Finally, the He = He™ (Hel) and H = H* (H)
partial ionization zones are at the origin of the big bump of opacity around log T ~ 4.1
and affect also strongly the adiabatic gradient (I3 — 1)/Ty. Finally. we give at the
bottom, the graph of the logarithm of the thermal relaxation time in seconds log(r,,).
as a function of the logarithm of temperature. The horizontal dashed line gives the
logarithm of the period of pulsation of the fundamental radial mode. The intersection
between this horizontal line and the thermal relaxation time gives the position of the
transition region, we see that it is situated exactly in the Hell partial ionization zone.

In Figures 4.43. 4.44 and 4.45. we give the results obtained for the models 2, 3 and 4
of Table 4.16. We refer to Eq. (4.2) for the definition of W. The physical explanation
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of the instability strip (Table 4.16, model 2).
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Table 4.16: Global characteristics of some § Scuti models used in Sections 4.3.3 to

4.3.6.

398

model 1

M/Mg =18 T = 7473K  log(L/Lo) = 1.1218
log g = 4.0183 R/Ry = 2.1743 age (Gy) = 1.02
(X,Zy=1(07,002) a=0.7 no overshooting
model 2

M/Mg, =18 Teg = T479K log(L/Lg) = 1.1225
log g = 4.0192 R/Ry =2.1721 age (Gy) = 1.02

(X, 2)=1(07,002) a=1 no overshooting
model 3

M/My; =138 Ter = T493K log(L/Lg) = 1.1294
log g =4.0154 R/Rs = 2.1816 age (Gy) = 1.1

(X, Z)=1(07,002) a=15 no overshooting
model 4

M/My =2 T = 8816 K log(L/Le) = 1.2200
log g = 4.2531 R/Rg = 1.7491 age (Gy) = 0.2
(X,Z2)=(07,002) a=1 overshooting = 0.2 H,,
model 5

M/My =2 Te=7552K  log(L/Lg) = 1.3530
log g = 3.8514 R/Ry = 2.7778 age (Gy) = 1.1
(X,Z)=1(07,002) a=05 overshooting = 0.2 A,
model 6

M/Mgy =2 Te = T590K  log(L/Le) = 1.3529
log g = 3.8600 R/Rg = 2.7503 age (Gy) = 1.08
(X,Z2)=1(07,002) a=1 overshooting = 0.2 H,
model 7

MMy =2 T = 7624K  log(L/Le) = 1.3519
log g = 3.8688 R/Rs = 27224 age (Gy) = 1.08

(X,Z) = (0.7, 0.02)

a=1.5

overshooting = 0.2 H,
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Figure 4.42: HR diagram with evolution tracks corresponding to the different & Scuti
models used in Section 4.3. The labels “+" give the position of the 7 models of Table
4.16. The 1.8 M, models are without overshooting but the 2 M, models are with an
overshooting of 0.2 H,. We see that, between the ZAMS and the TAMS, the value of
the mixing length parameter « has a negligible impact on the evolution tracks.

of the -7 mechanism driving the § Scuti stars is much the same as the »x mechanism
driving the 8 Cephei stars, and we refer to Section 4.1.3 for more details. The difference
is that the driving region is now situated exactly in the Hell partial ionization zone
wlere sips is increasing outwards (Figure 4.41). The significant decrease of the adiabatic
exponents I'1, I'; and T’ in this region (graph of (['3—1) /Ty with the label Tpg in Figure
4.41) affects strongly the opacity and temperature variations, and plays thus also a
significant role in the driving process. This mechanism has been initially proposed by
Cox (1967) and is usually called the x-v mechanism.

Figures 4.43 and 4.44 give the typical case of a 1.8 M. J Scuti with an unstable
fundamental radial mode. The model of Figure 4.43 has a mixing length parameter
a = 1 (model 2 of Table 4.16) and in the model of Figure 4.44, o« = 1.5 (model 3 of
Table 4.16). We see in these figures that the main driving region is, as expected, the
Hell partial ionization zone. But a small driving is also induced by the Hel and H
partial ionization zounes. By comparing the two figures, we see that the larger is o, the
more efficient is the driving in this small region. We propose the following explanation.
We see in Figure 4.57 that the higher is «, the lower is the gradient of temperature in
the thin convection zone of this region. Because the interval of temperature between
the base and the top of the H partial ionization zone is approximately constant, the
mass and the heat capacity of this zone is thus increasing with «, so that the driving
is more efficient for larger a.
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In order to understand the origin of the blue edge of the instability strip, we give
in Figure 4.45 the results obtained for a young 2 Mg model (model 4 of Table 4.16),
just out of the instability strip. We see that, in this case, the driving of the Hell
partial ionization zone is not enough efficient to counterbalance the damping of the
more internal layers. The physical explanation is that, for hotter models, the partial
ionization zone is closer to the surface, where the heat capacity is too small to drive
efficiently the mode.

In Figures 4.46, 4.47 and 4.48, we show the unstable modes determined by our non-
adiabatic code along 3 sequences of evolution. In each figure, we give four graphs
corresponding to the spherical degrees £ =0, =1, £ =2 and £ = 3. In each graph, we
give the frequencies in cycles/day of modes of different radial order n, as function of
the age of the models in Gyears, a scale with the logarithm of the effective temperature
is given at the top. The empty circles correspond to stable modes and the full circles
to unstable modes. Figures 4.46 and 4.47 are for two 1.8 My evolution track with two
different values of the mixing-length parameter o 1 and 1.5 respectively. Since the
superficial convection zone is very thin in this part of the HR diagram, the internal
structure and the evolution tracks are very little affected by changes of o, But it is not
the case of the non-adiabatic results. By comparing Figures 4.46 and 4.47, we see that
more unstable modes are predicted for larger a. This comes from the small driving
of the H partial ionization zone very sensitive to « (compare Figures 4.43 and 4.44).
For the 1.8 M., evolution tracks, p-modes from typically ps to py are unstable for the
young models close to the ZAMS, and low-order p-modes and g-modes are unstable
for older models close to the TAMS. The numerous avoided crossings occuring in the
evolved models and resulting from the mixing between p and g-modes can also be seen
in these figures. In Figure 4.48, we give the results obtained for a 2 Mg evolution
track. The young 2 M. models are beyond the blue edge of the instability strip
and no unstable modes are predicted (see also Figure 4.45). As the star evolves, the
Hell partial ionization zone goes deeper, where the heat capacity is sufficient to drive
efficiently the star, and more unstable modes are predicted and observed.
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ature, for the fundamental radial mode of a 1.8 M ¢ Scuti model with & = 1 (Table
4.16, model 2).
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Figure 4.46: Stable and unstable modes of degree £ = 0 (left, top), £ = 1 (right, top).
¢ = 2 (left, bottom) and £ = 3 (right, bottom) along a 1.8 My sequence of evolution
with o = 1. We give the frequencies of the modes in cycles/day as function of the age
in Gyears and of log(Teg). The full circles correspond to the unstable modes and the
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Figure 4.47: Stable and unstable modes of degree £ = 0 (left, top), £ = 1 (right, top).
£ = 2 (left, bottom) and £ = 3 (right, bottom) along a 1.8 M, sequence of evolution
with o = 1.5. We give the frequencies of the modes in cycles/day as function of the
age in Gyears and of log(Teg). The full circles correspond to the unstable modes and
the empty circles to the stable modes.
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Figure 4.48: Stable and unstable modes of degree £ = 0 (left, top), £ = 1 (right, top),
¢ = 2 (left, bottom) and £ = 3 (right, bottom) along a 2 Mg sequence of evolution
with o = 1. We give the frequencies of the modes in cycles/day as function of the age
in Gyears and of log(Teg). The full circles correspond to the unstable modes and the
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4.3.4 Comparison between adiabatic and non-adiabatic eigen-

functions
0
\J/’
,\ /‘“».J dT,4
|
.10 + \ | 4
N
20 b ‘{ [ 4
|
.
30 b \ ! dT -
I
L
| _
|
y
50 L , K . , [ , ,
75 7 8.5 6 55 5 45 4 35

log T

Figure 4.49: Real part of the Lagrangian variation of the temperature R{67/7T'} as
computed by our non-adiabatic code (solid line with the label dT) compared to the
adiabatic Lagrangian variation of the temperature 67/T|,a = (I's — 1)/T16P/Plag
(dashed line with the label dT.q), as function of the logarithm of temperature, from
the center to the surface of the star, for the fundamental radial mode of a 1.8 My, §
Scuti model.

For & Scuti stars, the adiabatic and non-adiabatic eigenfunctions are extremely different
in the superficial layers. We illustrate the results obtained for a 1.8 My & scuti model
whose global characteristics are given in Table 4.16 (model 2), for the fundamental
radial mode. In Figure 4.49, we compare the real part of the Lagrangian variation
of the temperature ¢7/T as computed by our non-adiabatic code (solid line with the
label dT) to the adiabatic Lagrangian variation of the temperature (dashed line with
the label dTuq) defined by Eq. (4.3).

The eigenfunctions are normalized in such a way that the relative radial displacement
is equal to 1 at the photosphere. As usually, the adiabatic and non-adiabatic results
are the same in the quasi-adiabatic region (from the center to log7T =~ 4.8). On the
contrary, from the driving region to the superficial layers, the two become totally
different. The non-adiabatic computations give a very big bump of 67/T in the H
partial ionization zone (around logT =~ 4.1). The explanation of this phenomenon is
the following. On one hand, we have a big bump of opacity in this region (Figure 4.41,
top). On the other hand, the luminosity variation is controled by the equation of energy
conservation and the small thermal relaxation time (Figure 4.41, bottom), imposing a
flat behaviour of § L in this region (Figure 4.43, bottom). The balance between the the
opacity variation éx/x and the gradient of temperature variation (967/9r)/(dT/dr)
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in the perturbed diffusion equation (Eq. (2.6)) leads to the 47 bump of Figure 4.49.
A more intuitive explanation is that the movement of the matter is very different
from the movement of constant optical depth layers (significant Lagrangian variation
of the optical depth), because of the significant opacity variations. Therefore, the
huge temperature variation of these layers comes from the significant movement of the
matter throughout the approximately constant 7'(7) distribution.

4.3.5 Non-adiabatic eigenfunctions in the atmosphere of § Scuti

stars
1000 ; ‘ ' ' ' I |
100 £ “
10 b _
[8r/T|
‘ sTeff/Teffl
(3)
0.1 : ‘ ‘ | | |
1 0 -1 -2 -3 -4 - -

log 7T

Figure 4.50: Amplitude of Lagrangian temperature variation [67'/T| (solid line).
amplitude of local effective temperature variation fr = [§T.g/Ter| (dashed line) and
[OInT/0InT (67/7)| (dotted line with the label “(3)"). in the atmosphere of a 1.8 M.
4 Scuti model. The y-axis is in a logarithmic scale.

Similarly to Sections 4.1.5 and 4.2.5, we illustrate now in Figure 4.50 some of the results
obtained in the atmosphere of a typical § Scuti star (same model and same mode as in
Section 4.3.4). For § Scuti stars, the presence of a thin superficial convection zoue up
to the photosphere does not give much latitude for the choice of the connecting layer
between the interior and atmosphere specific treatments (Chapter 2). It has to be at
the same time sufficiently deep, so that the diffusion approximation is valid beneath
it. and it has to be out of the superficial convection zone, because our treatment of
the transfer in the atmosphere is not adapted to the presence of a convection zone.
The best compromise we found for § Scuti stars was to put the connecting layer at
log7 = 0. In Figure 4.50, the solid line is the graph of {§T"/T} in the atmosphere, we
note that the y-scale is logarithmic. The smoothness of |67/T| at logr = 0 confirms
that our two specific treatments in the interior and in the atmosphere match well at
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the connecting layer. The dotted line with the label “(3)" is |0InT/01n 7 (é7/7)| {third
term of Eq. (2.32)). As for § cephei and SPB stars, this term is large, so that the
Lagrangian variation of the temperature §7/7 and the variation of the temperature at
constant optical depth are very different in the atmosphere. We see also that this term
does not go to zerc at the last layer, because of the significant values of 9lnT/Jnr
in the outermost layers of the Kurucz atmosphere models. We note that the small
bump of |67/T| around logT = -0.6 comes from a similar bump of dInT/dInT
in the non-grey Kurucz atmosphere. In the same figure, the horizontal line is the
amplitude of local effective temperature variation fr = |6Tes/Tes| (for a normalized
relative radial displacement at the photosphere). §T/T and 67w/ Ter are very different
at the photosphere. It is important to take this difference into account in the flux
boundary conditions and in the photometric mode identification methods. For the
sake of clarity, the terms |01InT/81n ge 6g¢/9.] and |8 InT /0 In Teg (6Tew/Ter)| are not
given in Figure 4.50, the first is close to zero and the second is close t0 fr = |6Twr/Tes|.

4.3.6 Non-adiabatic photometric observables in ¢ scuti stars

As presented in Section 3.2, multi-colour photometric observations can be confronted
to the theoretical predictions of our non-adiabatic code. We have shown that this
confrontation can be used as a tool for mode identification. In this Section, we present
the application of our method of photometric mode identification to § Scuti stars.

An important specificity of § Scuti stars, compared to 8 Cephel stars and SPBs is that,
for the first, the observations show significant phase differences between the magnitude
variations in different filters, as well as a phase-lag between the light-curve and the
velocity-curve very different from the adiabatic 90°. As we will show, these phase-lags
are also predicted by our non-adiabatic computations. They are very useful observables
for the photometric mode identification methods and have to be taken into account
{Garrido et al. 1990). They can also be used as a constraint on the models. We will see
that the non-adiabatic phase-lags and amplitude ratios predicted by our non-adiabatic
code are very sensitive to the characteristics of the thin superficial convection zone,
so that a confrontation with the observations can constrain it and test the different
theories of convection (mixing-length, FST, 3-D hydrodynamic simulations). So strong
constraints could not be derived from the study of the pulsation frequencies alone.
More precisely, the pulsation kinetic energy of the thin superficial convection zone is
negligible compared to the total kinetic energy of the star. Therefore, the pulsation
frequencies are very little affected by the physical characteristics of this zone. We
term non-adiabatic asteroseismology the process of constraining the superficial regions
of a star by confronting the predictions of a non-adiabatic code to the photometric
observables (amplitude ratios and phases in different filters).

In Figure 4.51, we give the non-adiabatic effective temperature variations fr (left) and
phase-lags 1r (right) obtained for different modes of a 1.8 Mg ¢ Scuti model with o =1
(Table 4.16, model 2), as function of the constant of pulsation Q in days. We refer to Eq.
(1.2), for the definition of Q. Here, @ = 0.0326 days for the fundamental radial mode
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(p1) and @ = 0.0103 days for the mode (£ = 0, ps). The different symbols correspond
to modes of different degrees £ (0 < £ < 4). We see that, in good approximation, the
amplitudes and phase-lags are independent of £, for a given pulsation period. This is a
usual result for p-modes pulsations, with dominating radial compression. We see also
that the phase-lags 1 are very different from the adiabatic 180°. In Figure 4.52, we
compare the values of fr and ¥r obtained for 1.8 My models with different values of
the mixing-length parameter oz o = 0.7 {Table 4.16, model 1), @ = 1 (Table 4.16,
model 2) and o = 1.5 (Table 4.16, model 3). And in Figure 4.53, we make a similar
comparison for 2 My models with o = 0.5 (Table 4.16, model 5}, & = 1 {Table 4.16,
model 6) and o = 1.5 (Table 4.16, model 7). We see that the non-adiabatic results
{mainly the phase-lags) are very dependent on this parameter.

The origin of the strong dependence of the non-adiabatic results with respect to the
mixing-length parameter o can be seen in Figure 4.54. In this figure, we give at the bot-
tom the phase difference between the luminosity variation and the radial displacement
Y = w(0L/L) ~ (&, /R), as function of the logarithm of temperature, for the fun-
damental radial mode of 1.8 M models with three different values of o (same models
as for Figure 4.52). At the top of Figure 4.54, we give the ratic between the radiative
luminosity and the total luminosity Ly /L of the star for the same three models. We see
that a first phase-lag between the luminosity variation and the displacement appears in
the driving region (Hell partial ionization), at logT =~ 4.6. This phase-lag is indepen-
dent of ¢, since no significant convection zone is present in this region. But a second
phase-lag appears in the thin superficial convection zone (H partial ionization), which
depends strongly on «. The larger is «, the larger is the size of this thin convection
zone (Figure 4.54, top), which implies a more important phase-lag in this region. The
significant change of phase of 4L in this convection zone means that large transfers of
energy and entropy variations are occuring, even in this region of very small thermal
relaxation time (Figure 4.41), with a driving effect on the star depending on « (Figures
4.43 and 4.44). Tt is important to note that, contrary to the non-adiabatic amplitudes
and phases, the evolution tracks (see Figure 4.42) as well as the pulsation frequencies
are very little affected by the value of a. Therefore, it is only on the basis of non-
adiabatic computations that precise constraints on the superficial convection zone of §
Scuti stars can be obtained.

§ Scuti stars with high amplitudes and a dominant radial mode are mainly observed in
the upper part of the § Scuti instability strip, corresponding to evolved stars with higher
masses and lower gravities. For such stars, the multi-colour photometric observations
are sufficiently precise, so that we adopted them for the confrontation between theory
and observations. The observations we used here are from Garrido et al. (1990). We
take two theoretical models of 2 Mg with o = 0.5 and « = 1.5 as representative of
these stars (Table 4.16, model 5 and model 7). In Figures 4.55 and 4.56, we give phase-
amplitude diagrams for Strémgren filters, for the 2 M ¢ Scuti models with o = 0.5 and
« = 1.5 respectively. The top figures give violet versus yellow amplitude ratios (y-axis)
and phase differences (x-axis). The bottom figures give temperature indicators: b —y
versus y amplitude ratios (y-axis) and phase differences (x-axis). In these figures, the
different regions are for different degrees £ (solid line for £ = 0, dashed line for £ =1,
dotted line for £ = 2 and dot-dashed line for £ = 3). These regions correspond to
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the method of Garrido et al. {1990), where the degree of non-adiabaticity R and the
phase-lag ¥ are free parameters such that 0.25 < R < 1 and 90° < o1 < 135°. The
circles correspond to our non-adiabatic theoretical predictions for modes of different
degrees £ with periods close to the one of the fundamental radial mode. In order to
obtain these results, the mode identification code of Garrido was improved, so that it
can now take our non-adiabatic computations into account, following Eq. (3.28). The
crosses correspond to observations of § Scuti stars (Garrido et al. 1990). All these
stars ave identified as radial pulsators.

The difference between theory and observations (mainly for violet versus yellow indica-
tors) can have many origins. A first source of uncertainty comes from the atmosphere
models used by our non-adiabatic code and for the determination of the monochromatic
flux and limb darkening derivatives used in Eq. (3.28). For the present simulations.
we used the atmosphere models of Kurucz (1993). Two weak points of the Kurucz
{1993) models are, on one hand, the treatment of the convection (mixing-length the-
ory with a fixed value o = 1.25), and on the other hand, the small number of poinuts
of the mesh. These two weak points were recently improved by Heiter et al. (2002)
and we intend to include these new atmosphere models in our non-adiabatic code. as
well as in the photometric mode identification codes of Garrido and Heynderickx. A
second source of uncertainty comes from the assumptions made in the derivation of
the monochromatic magnitude variation (Eq. (3.28)). Two weak points are typically
that we make the one-layer approximation (see Section 3.2.1) and that we neglect the
rotation-pulsation interaction (see Daszyfiska-Daszkiewicz et al. 2002). Finally, we
recall that the convection-pulsation interaction is not taken into account in our present
non-adiabatic code (frozen convection).
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Figure 4.51: Non-adiabatic effective temperature variations and phase-lags for differ-
ent modes of a 1.8 M-~ § Scuti model with o = 1 (Table 4.16, model 2). At the left:
amplitude of local effective temperature variations fr = |67, /Terl, as function of the
constant of pulsation Q in days. At the right: phase-lag 97 in degrees. The “+” are
for £ = 0 modes, the “x” for £ = 1 modes, the asterisks for £ = 2 modes, the “I3” for

¢ = 3 modes and the “8” for £ = 4 modes.
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Figure 4.52: Non-adiabatic effective temperature variations fr (left) and phase-lags
r (right) for different modes (0 < £ < 4) of 1.8 My § Scuti models with different
values of o (0.7, 1 and 1.5). The “+" are for the model with a = 0.7 (Table 4.16, model
1), the “x” for the model with & = 1 (Table 4.16, model 2} and the asterisks for the
model with & = 1.5 (Table 4.16, model 3).
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Figure 4.53: Non-adiabatic effective temperature variations fr (left) and phase-lags
wr (right) for different modes of 2 M. ¢ Scuti models with different values of o (0.5,
1 and 1.5). The “+" are for the model with & = 0.5 (Table 4.16, model 5), the “x”
for the model with o = 1 (Table 4.16, model 6) and the asterisks for the model with
a = 1.5 (Table 4.16, model 7).
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Figure 4.54: At the bottom: phase difference between the luminosity variation and
the radial displacement ¢, = ¥(6L/L) — ¥(&/R), as function of the logarithm of
temperature, for the fundamental radial mode of 1.8 My models with three different
values of o (solid line for o = 0.7, dashed line for o = 1 and dotted line for & = 1.5).
At the top: ratio between the radiative luminosity and the total luminosity of the star
for the same three models.
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Figure 4.55: Phase-amplitude diagrams for Stromgren filters and for a 2 Mg § Scuti
model with a = 0.5 (Table 4.16, model 5). At the top: violet versus yellow amplitude
ratios (y-axis) and phase differences (x-axis). At the bottom: temperature indicators,
b — y versus y amplitude ratios (y-axis) and phase differences (x-axis). The different
regions are for different degrees ¢, with R and v as free parameters (Garrido et al.
1990). the circles are our non-adiabatic predictions for a period close to the one of the
fundamental radial mode and the crosses are the observations of § Scuti stars identified
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Figure 4.56: Same caption as in Figure 4.55, but for a 2 M, ¢ Scuti model with
a = 1.5 {Table 4.16. model 7).
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4.3.7 The thin superficial convective zone

The real characteristics of the thin superficial convection zone of § Scuti stars are badly
known. The main problem is that this zone is so thin that the usual mixing-length
theory (MLT) does not give an appropriate description of it. The basic assumption
of the MLT is to assume that the mean free path of a convective element (MPCE) is
[ = aH, However, in the very thin superficial convection zones of the ¢ Scuti stars,
this hypothesis becomes questionable. This is evident at the view of Figure 4.58. At
the top of this figure, we give the ratio between the radiative luminosity and the total
luminosity as function of z = r/R, for the three 1.8 My models with @ = 0.7, 1 and
1.5. As expected, the larger is «, the larger is the size of the thin superficial convection
zone. But in the same figure. we give the intervals dx corresponding to the MPCE:
dx = I/R = oH,/R. 1t is striking to. see that, in the three cases, the size of the
convection zone is smaller than the MPCE ! The origin of this paradox is that the
MLT is local and does not take the convection zone boundaries into account in the
determination of the MPCE.

Another problem is the pulsation-convection interaction. As said before, we adopt a
frozen convection approximation in our non-adiabatic treatment. This approximation
is reasonably good when the mean life time of the convective elements 7o, is longer
than the period of pulsation, so that the dynamic of the convection has not the time
to adapt to the physical changes due to the pulsation. Unfortunately, this is not the
case in the thin superficial convection zone of 6 Scuti stars, as illustrated at the bottom
of Figure 4.58 where we give the values of 7one (in seconds) obtained for models with
different o (the horizontal line is the period of the fundamental radial mode). Therefore,
we can expect that the pulsation-convection interaction is not negligible in 4 Scuti stars
and could affect significantly the photometric amplitudes and phase-lags.

-1000 dlnT/dlnr y 7 R ]
-2000 b
a=1
-3000 |
o=1
-4000
-5000 F o=0
-5000 |
-7000 .
5.5 5 1.5 a 3.5

Log T

Figure 4.57: dln7/dlnr as function of the logarithm of temperature for 1.8 M. §
Scuti models with three different values of « (solid line for o = 0.7. dashed line for
a =1 and dotted line for o = 1.5).
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Figure 4.58: In the top panel, we give the ratio between the radiative luminosity
and the total luminosity as function of z = r/R for 1.8 M ¢ Scuti models with three
different values of o (solid line for o = 0.7, dashed line for ¢ = 1 and dotted line for
o = 1.5). We give also the intervals dz = a H,/R corresponding to the mean free path
of the convective elements in the MLT. In the bottom panel, we give the mean life time
of the convective elements (in seconds) as predicted by the MLT for the same three
models with different values of &. The horizontal line corresponds to the period of the
fundamental radial mode.
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4.4 ~ Doradus stars

4.4.1 « Doradus stars from an observational point of view

Just at the right and partially inside the instability strip of § Scuti stars, a new class
of variable stars has recently been discovered: the y Doradus stars. The periods of
the v Dor stars are between 8 hours and 3 days, many of them are multiperiodic.
The observed periods are not always stable (Kaye et al. 2000). They show periodic
photometric variability as well as line profile variability. A typical amplitude in the
Johnson V filter stays below 0.05 mag, and a fypical amplitude of radial velocity is a
few km/s. Long term campaigns have been carried out for the search of new ~ Dor
stars, such as the FlanSA ~ Dor campaign (Eyer et al. 2002), moreover the use of the
Hipparcos data base permitted to find numerous new candidates (Aerts et al. 1998,
Handler 1999, Koen & Eyer 2002). The current number of bona fide v Doradus stars
is 30. Since the § Scuti and « Doradus instability strips overlap, searches of objects
showing both § Scuti short periods and v Doradus long periods have been carried out.
(Handler & Shobbrook 2002). The star HD 209295 shows clearly such an “hybrid”
Dor / & Scut behaviour (Handler, Balona et al. 2002), and other candidates for which
the long periods are not observational artifacts have been found (Breger 2003).

4.4.2 ~ Doradus stars from a theoretical point of view

~ Doradus stars remain a mystery, from the point of view of a theoretician. The position

and Tog ~ 7000 K. As for the § Scuti stars, the v Doradus stars have one central
convection and one (or two) envelope convection zones, all the discussions in the next
sections will concern the envelope convection zone. No doubt is left that, at least for
some of them, the variability comes from real pulsation and not from travelling spots
or binarity, for example the prototype star v Doradus itself (Balona et al. 1996). The
typical periods of the v Doradus point towards high order gravity modes, as for the
SPBs. Up to now, no generally accepted theoretical mechanism has been found, which
explains the instability of the v Doradus stars; Guzik et al. (2000) proposed a driving
mechanism due to convective blocking (see Section 4.4.4).

4.4.3 Some observations and theoretical models

We chose the two v Doradus stars HD 12901 and HD 48501 as reference for the appli-
cations presented in the next sections. Observations of these star with Geneva photom-
etry were carried out by the team of C. Aerts with the old Swiss 0.7 m telescope at La
Silla (Eyer & Aerts 2000). The analysis of 174 and 184 measurements for respectively
HD 12901 and HD 48501, spread over 6566 and 7245 days was done by Aerts et al.
(2003a). We present in Table 4.17 a summary of the observational results for these two
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stars. The calibrations by Kiinzli et al. (1997) were used for the estimation of log Tug

and logg.

Table 4.17: log T.s, log g, frequencies and Geneva photometric magnitude variations

for the two v Doradus stars HD 12901 and HD 48501 (Aerts et al. 2003a).

Frequency in

Photometric magnitude variation in Geneva filters

cycles / day dmy  dmp, dmp  dmp, dmy, dmy dmg
HD 12901 log Ty = 3.85 logg =447 [M/H}=-04
fi=1.21562 0.0140 0.0218 0.0204 0.0197 0.0150 0.0148 0.0135
fo =1.3959%4 0.0062 0.0106 0.0106 0.0101 0.0078 0.0074 0.0066
fs = 2.18637 0.0058 0.0106 0.0106 0.0094 0.0080 0.0079 0.0074
HD 48501 logTew = 3.85 logg =4.49 [M/H] = -0.1
f1=1.09401 0.0129 0.0186 0.0180 0.0167 0.0138 0.0134 0.0121
fa = 1.29050 0.0132 0.0192 0.0187 0.0183 0.0139 0.0135 0.0124
f3 = 119927 0.0065 0.0093 0.0086 0.0082 0.0059 0.0065 0.0057

Table 4.18: Global characteristics of some v Doradus models used in Section 4.4

Model 1

MMy =15 Tie = 7084K  log(L/Lg) = 0.918
logg =4.05 R/R: =1914 age (Gy) = 1.74
(X.Z)y=1(07, =2 no overshooting
Model 2

M/Ms =15 Tue = 7091K  log(L/Ls) = 0.916
log g = 4.05 R/Rs =1.905 age (Gy) =171
(X.Z)=1(07 a=15 no overshooting
Model 3

M/M, =15 Te = T090K  log(L/Ly) = 0.916
log g = 4.05 R/Rg = 1905 age (Gy) = 1.71
(X.Z2)=1(0.7,0013) a=1 no overshooting
Model 4

M/My =15 T.e = 7085K  log(L/Ls) = 0.918
logg =4.05 R/R; =1.914 age (Gy) =1.74
(X.Z)=1(07,0013) a=05 no overshooting

We computed theoretical stellar models with different values of the mixing-length pa-
rameter «, close to the effective temperature and metallicity of HD 48501, with a mass
of 1.5 M. We did not take the gravity measurement of this star into account because
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it is too high and corresponds to models below the ZAMS (see the discussion in Eyer
et al. (2002)). The global characteristics of these models are given in Table 4.18.

4.4.4 Driving the gravity modes of v Doradus stars

Contrary to the other stars of our study, the driving of ¥ Doradus high-order g-modes
cannot be explained by a classical £ — v mechanism. More precisely, for these longer
periods, the transition region where the thermal relaxation time is of the same order as
the period of pulsation is situated deeper, between the Hell partial ionization zone and
the very small metal opacity bump, where the x mechanism is inefficient. Therefore.
another driving mechanism has to be found. Guzik et al. (2000) explained the driving
of v Doradus stars as a convective blocking mechanism, where the luminosity is peri-
odically blocked at the base of the envelope convection zone. For their computations,
Guzik et-al. used the non-adiabatic code of Pesnell (1990), in which the Lagrangian
variation of the convective luminosity is set to zero during the pulsation cycle (frozen-in
convection, see EBq. (2.7)). We confirm this result with our non-adiabatic computations
and with the same way to freeze the convection. In Figure 4.59. we give the results
obtained for the mode (£ = 1, ga) of a 1.5 My model with o = 2 (Table 4.18, model
1). The frequency of this mode is close to the observed main frequency of HD 48501.
We see that. at the base of the convection zone, —dW/dlogT is positive and W has
a positive derivative, so that this region has a driving effect on the star. A significant
decrease of the luminosity variation |0L/L| at the base of the convection zone can be
seen at the bottom of Figure 4.59 and is at the origin of this driving. This decrease of
|61/ L] comes from the quick decrease of Ly /L at the base of the convection zone (see
Eq. (2.7) and the top of Figure 4.59). We note that our models have smaller metallic-
ities than the models of Guzik et al. (2000). Therefore, this driving mechanism is not
much dependent on the metallicity.

The driving is efficient when the envelope convection zone goes sufficiently deep. so
that its base is close to the transition region. On the contrary, when the the convection
zone is very small, it is no longer efficient. In order to illustrate this, we give in Figure
4.60 the results obtained for a model with a = 0.5 (Table 4.18, model 4). For this
model, the convective blocking is inefficient because the convection zone is situated
in a region of too small heat capacity (see the flat behaviour of W and [0L/L] in the
outer layers). The convection can be frozen in different ways (freezing the variation
of the convective flux, of the convective luminosity. of the divergence of the convective
flux, ...} and Loffler (2003) showed that the convective blocking mechanism is not
efficient for any kind of frozen convection approximation. More precisely. he showed
that by neglecting the Lagrangian variation of the divergence of the convective flux
instead of freezing the convective luminosity (as we and Guzik et al. (2002) do). the
high-order g-modes of typical v Doradus models are no longer unstable.

As conclusions, for models with a sufficiently deep envelope convection zone and by
freezing the Lagrangian variation of the convective luminosity, we can explain the
driving of the high-order g-modes of v Doradus stars (see Figure 4.59 and Guzik et
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Figure 4.59: From top to bottom: ratio between the radiative luminosity and the total
luminosity Ly/L (top), —dW/dlogT, dimensionless work integral W and amplitude of
luminosity variation |dL/L| (bottom), as function of the logarithm of temperature, for
the mode (£ =1, gag) of a 1.5 M, model with o = 2 (Table 4.18, model 1).
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with & = 0.5 (Table 4.18. model 4).
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al. (2000)). However, this driving mechanism is not efficient when the envelope con-
vection zone is thin (Figure 4.60) and it depends on the adopted frozen convection
approximation (Loffler 2003).

4.4.5 Non-adiabatic photometric observables in v Doradus stars

We have presented in Table 4.17 the Geneva photometric amplitudes observed for the
two v Doradus stars HD 12901 and HD 48501 (Aerts et al. 2003a). These observations
can be confronted to our theoretical predictions. We will concentrate on theoretical
models of HD 48501 (Table 4.18). In Figures 4.61, 4.62, 4.63 and 4.64, we present the
non-adiabatic effective temperature variations and phase-lags obtained for different
models of HD 48501 with o = 2, 1.5, 1 and 0.5 respectively (Table 4.18, models 1,
2. 3 and 4). We see that changing « gives totally different non-adiabatic results.

he amplitudes of local effective temperature variations and the phase-lags are thus
extremely dependent on the size of the envelope convection zone. This sensitivity is
particularly dramatic for the phase-lags ¥ high values of o corresponding to a large
envelope convection zone give phase-lags close to —180° (Figure 4.61, right) and low
values of o corresponding to a small envelope convection zone give phase-lags close to
0° (Figure 4.64, right) !

The very strong dependence of the non-adiabatic results on the size of the envelope

convection zone is explained in Figure 4.65. In this figure, we give the ratio between the
radiative luminosity and the total luminosity Lg/L (top), the veal part of the luminosity
variation R{6L/L} (middle) and the phase difference between the luminosity variation
and the radial displacement vy = w(6L/L) — (& /R) (bottom) as function of the
logarithm of temperature for the same y Doradus models as previously (Table 4.18,
models 1, 2, 3 and 4), and for the mode (£ = 1, gag) with theoretical frequency closest
to the dominant frequency of HD 48501. For the real part of the luminosity variation,
we did not use the usual normalization, but the radial displacement was normalized
to —1 at logT = 5.7, so that the results are identical in the quasi-adiabatic region
{from the center to logT =~ 5). We see that, for high values of & and thus for a deeper
convection zone, the luminosity variation is blocked at the base of the convection zone.
This blocking is so efficient for the model with & = 2 that a node is present in the real
part of the luminosity variation, at logT ~ 4.7 (Figure 4.65, middle), which explains
the phase 1 close to —180° (Figure 4.65, bottom). On the contrary, for low values of
o, the envelope convection zone is very thin, the heat capacity of this region is very
small and the luminosity variation is not much affected by the convection, so that the
phase 1 remains close to the adiabatic 0°.

In Figures 4.59 to 4.65, we have illustrated the influence of the size of the envelope
convection zone on the non-adiabatic results by changing the mixing length parameter
o; we note that we found exactly the same sensitivity to the size of the convection zone
by comparing the results obtained for models with different effective temperatures. In
Figure 4.66, we compare the theoretical and observed amplitude ratios obtained with
Geneva photometry for HD 48501. The four figures correspond to the four models
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with o = 2 (top, left), o = 1.5 (top, right), @ = 1 (bottom, left) and o = 0.5
(bottom, right). The “+”, “x” and “[I" correspond to the observed amplitude ratios of
the 3 frequencies fi, f» and f;. The lines correspond to our non-adiabatic theoretical
predictions for modes of different degrees ¢ with theoretical frequency closest to the
observed frequency f; (solid line for £ = 1, dashed line for ¢ = 2 and dotted line for
¢ = 3). We see.in Figure 4.66 that none of the theoretical models can reproduce the
observations. We see also in this figure that the theoretical amplitude ratios (mainly for
2 = 1) are very little affected by changes of «, although the non-adiabatic quantities
fr and 1y are extremely dependent on it (Figures 4.61, 4.62, 4.63 and 4.64). The
explanation is that the geometrical distorsion term is zero for £ = 1 modes and the
gravity term is very small for high-order g-modes, so that the term associated to the
effective temperature variation is dominating in Eq. (3.28). Therefore, the fr and
1 dependences vanish in the amplitude ratios which reflect essentially ratios of the
monochromatic flux derivatives ary (Eq. (3.10)).

Because none of our theoretical models could reproduce the observations (Figure 4.66),
we decided to let fr as a free parameter and searched for the values leading to the best
agreement with the observations. For the other parameters, we took ¢ = (° (no
phase differences are observed between different filters) and f, = 2+ K~ (Eq. (3.40)).
The results obtained are presented in Figure 4.67 and they are very surprising. In
this figure, the “+, “x” and “T" correspond to the observed amplitude ratios of the
3 frequencies and the lines are the theoretical predictions for the values of £ (1) and
fr which best fit the observations. On one hand, the degree is identified without any
doubt as £ = 1 (the other values of ¢ cannot fit the observations, whatever the value of
fr). On the other hand, the values of fr which fit the observations are extremely low:
fr = 0.14 (solid line). fr = 0.17 (dashed line) and fr = 0.22 (dotted line) ! So low
values of fr are very hardly explained by classical g-mode pulsation. More precisely,
for high-order g-modes, high density variations and thus high temperature variations
are expected for a normalized radial displacement at the photosphere, because of the
dominating transversal compression: and low gravity variations are expected because
of the Jow radial displacement and acceleration of the matter. On the contrary, the low
values of fr given above would correspond to a physical phenomenon where the grav-
ity variations are dominating. Significant gravity darkenings are typically encountered
in close binary systems where the two components affect each other by tidal effects
(Willems & Aerts 2002, Claret & Willems 2002). Unfortunately, these stars are not
close binaries (Aerts, private communication). Further investigations would be neces-
sary in order to determine what is really happening in HD 48501. We did not present
here the results obtained for HD 12901, They are very similar to the ones obtained for
HD 48501: our theoretical models do not succeed to reproduce the observed amplitude
ratios, the values found for fr when it is let as a free parameter are also very low and
all the frequencies are identified as £ = 1 modes. Therefore, our conclusions are the
same for this star.

We note finally that multi-colour photometric observations can be used as a test of the
driving mechanism of v Doradus stars. More precisely, both the theoretical photometric
magnitude variations and the driving mechanism can be determined by non-adiabatic
computations. For a simple reason of consistency, the same non-adiabatic computations
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would have thus to explain at the same time the photometric amplitude ratios and
the driving of the modes. For the stars HD 48501 and HD 12901, the confrontation
between the theoretical and observed amplitude ratios was not successful, so that we
could hardly consider these observations as high-order g-modes driven by the convective
blocking at the base of the envelope convection zone.
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Figure 4.61: Same caption as in Figure 4.62, but for a model with o = 2 (Table 4.18,
model 1).
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Figure 4.62: Non-adiabatic effective temperature variations and phase-lags for dif-
ferent modes of a 1.5 Mg model with o = 1.5 (Table 4.18, model 2}. At the left:
amplitude of local effective temperature variations fr = |6Teq/Ter| (normalized radial
displacement at the photosphere), as function of the pulsation frequency in cycles/day.
At the right: phase-lag 97 in degrees. The “+” are for £ = 1 modes, the “x” for £ =2
modes and the asterisks for £ = 3 modes. The three vertical lines correspond to the
three observed frequencies of the v Doradus star HD 48501.
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Figure 4.63: Same caption as in Figure 4.64, but for a model with o = 1 (Table 4.18,
model 3).
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Figure 4.64: Non-adiabatic effective temperature variations and phase-lags for dif-
ferent modes of a 1.5 Mgy model with o« = 0.5 (Table 4.18, model 4). At the left:
amplitude of local effective temperature variations fr = [0T.g/Ter| (normalized radial
displacement at the photosphere), as function of the pulsation frequency in cycles/day.
At the right: phase-lag 17 in degrees: The “+” are for £ = 1 modes, the “x” for £ =2
modes and the asterisks for £ = 3 modes. The three vertical lines correspond to the
three observed frequencies of the v Doradus star HD 48501.
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Figure 4.66: Theoretical and observed amplitude ratios obtained with Geneva pho-
tometry for the v Doradus star HD 48501. The four figures correspond to the four
models with o = 2 (top, left), @ = 1.5 (top, right), & = 1 (bottom, left) and o = 0.5
(bottom, right). The “+", “x” and “[I" correspond to the observed amplitude ratios
of the 3 frequencies f; = 1.09401cd™. f, = 1.29050cd™" and f3 = 1.19927cd ™, re-
spectively. The lines correspond to our non-adiabatic theoretical predictions for modes
of different degrees ¢ with theoretical frequency closest to the observed frequency fi
(solid line for £ = 1, dashed line for £ = 2 and dotted line for £ = 3).
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Chapter 5

Conclusions and future prospects

5.1 Conclusions

In the franie of our thesis. we have written a code which computes the non-radial
non-adiabatic oscillations of stellar models. This code is very useful in the frame of
asteroseismology (see Chapter 3):

o It is able to determine very precisely the driving mechanisms at the origin of
stellar pulsations.

o It can be used as a tool for photometric mode identification. Moreover, it can be
used to constrain stellar interiors and atmospheres, by searching for the best fit
between the theoretical and observed photometric amplitude ratios and phase-
lags, a procedure we term non-adiabatic asteroseismology.

o Finally, it can be used to determine the influence of temperature variations on
the line-profile variations due to stellar pulsations.

The main specificity of our non-adiabatic code is the special care given to the treatment
of the pulsation in the stellar atmosphere (see Section 2.3). In comparison with non-
adiabatic codes without such atmospheric treatment, its theoretical predictions are thus
more precise in the superficial layers. opening the way to a better confrontation with
photospheric observables (photometric amplitude ratios and phases) and spectroscopic
observables (line-profile variations).

The numerical method of solution has not been presented here and we refer to the
original text for more details (see the prefatory note at the beginning of this book). Asa
suminary, for the resolution of the problem, we have adopted a finite difference method.
We took a two grids interlaced mesh and the discretization was chosen such that the
system of difference equations is intrinsically compatible with the integral expressions
for the eigenvalues, which improves significantly the precision and the stability of our
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numerical method. A generalized inverse iteration algorithm permits then to converge
very quickly towards the solution (eigenfunctions and eigenvalues).

We have applied our non-adiabatic code to the study of four types of near-main se-
quence variable stars.

The application of our non-adiabatic code to § Cephei stars shows firstly the mechanism
at the origin of their pulsation: it is a k-mechanism associated to the opacity bump in
the partial ionization zone of iron, at temperatures around 200 000 K. The periods of the
unstable modes predicted by our non-adiabatic code are in agreement with the typical
observed periods of # Cephei stars. Secondly, we have performed ‘a deep theoretical
study of the photometric variations of the star 16 Lacertae. On one hand, we could
identify the degrees £ of the three observed modes. On the other hand. by searching
for the model which best fits the observations, we could constrain the metallicity of
this star, finding that it is slightly smaller than the solar metallicity (Z ~ 0.015).
Thirdly, we have studied the influence of non-adiabatic temperature variations on the
line-profile variations of the Si*™ triplet (456.784 nm) for different modes of a typical
Cephel model. Our conclusion is that the the non-adiabatic temperature and gravity
variations have very small effect on the line-profile variations compared to the influence
of the velocity field, so that spectroscopic mode identification methods which do not
take these non-adiabatic effects into account (e.g. the moment method) can be used
for 3 Cephel stars.

Slowly Pulsating B stars

Similarly to the 5 Cephei stars. our non-adiabatic code shows that the mechanism at the
origin of the pulsations of Slowly Pulsating B stars (SPBs) is a s~mechanism associated
to the opacity bump in the partial ionization zone of iron. The periods of the unstable
high-order g-modes predicted by our non-adiabatic code are in agreement with the
typical observed periods of SPBs. Secondly, we have applied our non-adiabatic code to
the study of 11 SPBs observed by De Cat {(2001). More precisely, we computed specific
theoretical models. we performed non-adiabatic computations and we have identified
the degree £ of the dominant modes, for each of these stars. Thirdly, we have studied
the influence of non-adiabatic temperature variations on the line-profile variations of
the Si* doublet (412.81 nm) for different high-order g-modes of a typical SPB model.
Our conclusion is the same as for 5 Cephei stars: the non-adiabatic temperature and
gravity variations have very small effect on the line-profile variations compared to the
influence of the velocity field, so that spectroscopic mode identification methods which
do not take these non-adiabatic effects into account can be used for SPBs.
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6 Scuti stars

Firstly, our non-adiabatic code shows clearly the mechanism at the origin of the pul-
sations-of §-Scuti stars. It is the well known x-v mechanism associated to-the opacity
bump-and the depletion of I'; and I'; in the second partial ionization zone of helium.
The same mechanism explains the instability of all the variable stars of the classi-
cal instability strip (classical Cepheids, RR Lyrae, ...). Secondly, we have applied
our noun-adiabatic code to the study of the multi-colour photometric variations of &
Scuti stars. Our non-adiabatic results, and thus the photometric amplitude ratios and
phases, are very sensitive to the characteristics of the very thin superficial convec-
tion zone. Therefore, this not well known zone can be constrained by an adequate
confrontation between theory and observations.

~v Doradus stars

We have applied also our non-adiabatic code to the study of v Doradus stars. We have
found (in agreement with Guzik et al. 2000) that, if the superficial convection zone
goes sufficiently deep, the driving of high-order g-modes can be explained by the con-
vective blocking at the base of this zone. However, the validity of the frozen convection
approximation is not evident for these stars, and we are not sure that the “real” con-
vective envelope has the required size. We performed non-adiabatic computations for
models with different sizes of the convective envelope and it appears that the growth
or damping rates, the amplitudes and the phases of effective temperature variations
are extremely dependent on the characteristics of this convection zone. However, none
of our theoretical results could reproduce accurately the photometric amplitude ra-
tios observed for the v Doradus stars HD 48501 and HD 12901 by the team of Prof.
Aerts. We conclude that the variability of v Doradus stars remains a mystery for the
theoreticians.

5.2 Future prospects

Our main future prospects are to include a better treatment of the interaction of stellar
pulsation with rotation and with convection in our non-adiabatic code, and to include
better atmosphere models in our non-adiabatic code, in the Code Liégeois d’Bvolution
Stellaire (CLES) and in the photometric mode identification code.

5.2.1 Infiuence of rotation

Our treatment is admissible for slow or moderate rotators. However, in fast rotators,
the effect of rotation on the dynamic of stellar pulsation appears throughout the two
well known fictive forces: the centrifugal force which affects the equilibrium configura-
tion as well as the pulsation, and the Coriolis force which can play a significant role in
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the equation of momentum conservation. There are two different approaches for the
treatment of the pulsation-rotation interaction.

Firstly; we can treat it in a perturbative way based on Taylor developments in (Q2/0),
where 0 is the angular frequency of rotation and ¢ is the angular frequency of pulsation.
This approach was initially derived by Cowling (1949) and Ledoux (1951), by keeping
only the first order terms in (/o). This theory predicts the well know equidistant
rotational splitting of frequencies, which gives for a uniform rotation:

Ontm = Ongy — m(l - Cn )Q) (51)

where C,; is called the Ledoux’s constant. The perturbative approach has been devel-
oped up to the second order (Lee & Baraffe 1995) and to the third order (Soufi et al.
1998). In these cases, the rotation induces a coupling between the spheroidal modes.
Daszyniska et al. (2002) showed recently that this coupling can affect significantly the
photometric observables for fast rotators. Therefore, it is necessary to take it into
account in the photometric mode identification for fast rotators.

Secondly, non-perturbative theories of the rotation-pulsation interaction have been
developed. In Unno et al. (1989 §34), Lee & Saio derived a method based on the
“traditional approximation”, where the Coriolis force associated with radial motion
and the radial component of the Coriolis force associated with horizontal motion are
neglected. Under the adiabatic approximation, the Cowling approximation and the
traditional approximation, the problem is much simplified and all the derivatives with
respect to the angular coordinates appear under one single operator. By computing the
cigenfunctions (Y7(¢, 4)) and eigenvalues (A7) of this operator, we obtain an infinite
family of functions for which the problem is uncoupled (in the absence of rotation this
operator is the Legendre operator £2, its eigenfunctions are the spherical harmonics
and its eigenvalues are £(£ + 1)). With this procedure, the final system of differential
equations is very similar to the problem without rotation (we just have to replace £(£+1)
by ¢ in the equation of mass conservation). The problem is that this procedure is no
longer valid if we do not make the adiabatic, Cowling or traditional approximations,
because the derivatives with respect to the angular coordinates no longer appear under
one single operator. Townsend (1997) used this treatment for the determination of the
velocity field and the line-profile variations of fast rotators and implemented it in the
codes BRUCE and KYLIE. Another non-perturbative treatment has been proposed by
Dintrans & Rieutord (2000). This treatment is based on the anelastic approximation
and the integration of the characteristics of the mixed-type operator.

We conclude that the problem of the rotation-pulsation interaction is far from being
completely solved. Since the spectroscopic and photometric observables can be signif-
icantly affected by fast rotation, it is useful to study this problem in more details and
include it in our treatment, which is one of our main prospects for the future.
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5.2.2 Influence of the convection envelope

Another difficult problem is the interaction between convection and pulsation. For hot
stars such as 8 Cephel stars and SPBs, there is no convective envelope, so that we
do not have to care about this problem. For colder stars with a convective envelope,
the complexity of the convection-pulsation interaction is often avoided by freezing the
convection (as we did until now in our non-adiabatic treatment). This approximation
is admissible only if the mean life time of the convective elements is much longer than
the pulsation periods. We remark however that there are different ways to freeze the
convection. which can lead to different results. In selar-type stars, a large convective
envelope is present and the convection-pulsation interaction plays a major role in their
excitation. This mechanism is called the stochastic excitation, where the oscillations
are forced stochastically by the acoustical energy generation coming from the turbulent
convection {Houdek et al. 1999). Even for pulsating stars with a very thin superficial
convection zone {4 Scuti and v Doradus stars), we showed that the characteristics of
this zone have a significant influence on the non-adiabatic photometric observables. As
shown in the bottom of Figure 4.58. the validity of the frozen convection approximation
is questionable in the thin superficial convection zone of ¢ Scuti stars, because the mean
life time of the convective elements predicted by the mixing-length theory (MLT) is
smaller than the period of the fundamental radial mode. Moreover, the validity of the
MLT itself is questionable for & Scuti stars because, as illustrated in the top of Figure
1.58. the size of the thin superficial convection zone is smaller than the mean free path
of the convective elements predicted by the MLT. Therefore, progress has to be done in
the modelling of this zone and in the treatment of its interaction with pulsation. In this
frame. the confrontation with photometric observables (amplitude ratios and phase-
lags) would permit to discriminate between different theories of convection (MLT, FST
(Canuto & Magzzitelli). 3D hydrodynamic simulations) and different treatments of the
couvection-pulsation interaction. We intend also to work on this difficult field in the
future.

5.2.3 Atmosphere models

Finally. constraints on the atmosphere models can also be derived from the study of the
photometric amplitudes and phase-lags due to stellar pulsation. As can be seen in Eq.
(3.28). the photometric amplitudes and phase-lags depend on the atmosphere models
throughout the derivatives of the monochromatic flux (a7, and a,,) and throughout the
integrals of the monochromatic limb-darkening law (times the Legendre polynomials)
and its derivatives (bey, Bra and By). Firstly concerning the limb-darkening law, we
note that an improved non-linear limb darkening law has been recently proposed by
Claret (2000). Secondly, new atmosphere models have been recently computed by
Heiter et al. (2002), including different treatments of the convection and increasing
significantly the number of points of the grids. We intend to include these atmosphere
models in our non-adiabatic code, in the Code Liégeois d’Evolution Stellaire (CLES)
and in the photometric mode identification code of Garrido. By confronting the results
obtained to observed photometric amplitude ratios and phase-lags. we could determine
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the models (and thus the treatment of the convection) which best fit the observations.
Since these atmosphere models are already computed, their inclusion in the different
codes would be the easiest step of our future prospects.
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