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ABSTRACT

The Richardson-Mandelbrot (R-M) fractal equation for lines
(profiles and perimeters), and the Hack-Mandelbrot (H-M) fractal
equation for perimeters and areas (lakes and islands) are examined
closely in terms of the original derivations and assumptions. Of
concern is the implicit assumption that theoretical results
obtained for special geometrical figures also apply automatically
to natural irregular curves. Discrepancies are found in the
dimensionality of the equations, predictions of an infinite line
length in the fractal plot, and lack of provisions to obtain a
"true" line length. The fractal dimension D is not defined in
physical terms. A serious limitation to the H-M expression is the
requirement of constant island shape. The lack of commonality
between the two fractal equations is most disturbing.

Inconsistencies also arise between the theoretical predictions
and the experimental findings. We observe nonlinear fractal plots
and variable values of D, conflicting results for islands and
lakes, and different results from vertical and horizontal sections.

Solutions to some of these problems are proposed. The dimen-
sionality shortcomings in the R-M and H-M equations are corrected,
a linearization treatment is outlined for the reversed sigmoidal
curves of materials fractal plots, an alternative equation is
proposed that eliminates the restriction on island shapes, and
suggestions are made to combine the two fractal equations of R-M
and H-M into one.

Key words: fractals, Hack-Mandelbrot, reverse sigmoidal fractal
curves, Richardson-Mandelbrot, Tomkeieff.

INTRODUCTION

Research on the fractal behavior of nonplanar surfaces and
their traces is proceeding rapidly and in many different ways.
There is also a major lack of agreement among the principal theor-
ies and experimental methods employed. Furthermore, conflicting
results are frequently reported, and interpretations are often
confounded by insufficient or limited data (Feder 1988). Conse-
quently, the results obtained by different means are difficult to
interpret and compare.

Fortunately, studies to correct the problems attendant to
materials fractal research are underway. A more rational and self-
consistent methodology for treating the fractal properties of
materials is slowly being achieved, and these findings are expected
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to promote uniform interpretation of results for a wide range of
materials.

Our approach in this paper is to examine closely the stated
postulates and assumptions in the two fractal equations, then to
assess the extent of agreement between the theoretical predictions
and the experimental results. Proposals are then put forward to
rectify the discrepancies noted.

THEORETICAL BACKGROUND

Both the Richardson-Mandelbrot (R-M) and Hack-Mandelbrot (H-M)
fractal relationships were developed from simple mathematical or
geometric models. The experimental fractal data available at that
time were minimal. The Richardson equation (Mandelbrot 1977, 1982)
expresses the rate of increase of the length of coastlines (or
irregular planar curves). "This exact formula..." is

L(n) = 9 (1)

where L(v) is the apparent length of an irregular planar curve,
which varies as a function of w(or ¢); i.e., the length of the
measuring 'yardstick' used to approximate the length of the
irregular curve. D, the fractal dimension, is related to the slope
of the linear form of Eq. (1), which is

log L(a) = (1 - D) log = (2)

The slope m = 1 - D. D is a constant, and can have fractional
values between 1 and 2. When log L(n) is plotted vs log %, Eq. (2)
predicts a straight line that extends without 1limit in either
direction.

In order for Eq. (1) to be valid, the irregular curve nust
possess the property of "self-similitude"; i.e., the curve should
have the same apparent visual shape and configuration at all
magnifications. As Mandelbrot (1982) puts 1it, "In order for the
exponent of self-similarity (D) to have formal meaning, the sole
requirement is that the shape be self-similar, i.e., that the whole
may be split up into N parts, obtainable from it by a similarity of
ratio r."

Thus, the major requirements of a fractal plot are (1) that it
is linear, (2) that it extends without limit in either direction,
and (3) that the slope, and thus D, is constant over the entire
fractal plot. If these conditions are not met, then the validity
of the self similitude assumption is in doubt, and fractal behavior
is questionable.

The other major fractal relationship being used in materials
research is due to H-M. It relates the perimeter length L of a
closed planar loop (or 'island') to its area, A. (Note that Eq. (1)
does not contain an area term.) Mandelbrot (1977,1982) invokes a
"standard equation of Euclidean geometry"

L =x al? (3)
where the constant K is a number entirely determined "for each

family of standard planar shapes (closed loops) that are geometri-
cally similar and have different linear extents". Thus, a log-log
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plot of L vs A yields a family of parallel lines of slope 1/2, but
with different intercepts determined by the particular planar shape
being considered. Mandelbrot (1982) then modifies Eq. (3) by
postulating that the L term behaves fractally whereas the A factor
does not. This gives

A = Kg LU (4)

The shape coefficient K. has a constant (numerical) value for any
one set of geometrically similar islands. Different values of K
are required for sets of islands having other shapes. Note that
Eqg.(4) does not explicitly provide for a variable measuring
vardstick g, as in Eqg. (1).

The major requirements for the validity of Eq. (4) are that
(1) all islands should have the same shape, (2) a log-log plot of
A vs L should yield a straight line that extends without limit in
either direction, and (3) D should have a constant value,

DISCREPANCIES WHEN APPLIED TO MATERIALS SYSTEMS

The principal characteristics, assumptions and implied conse-
quences of the R-M and H-M fractal relationships have been outlined
above. Several theoretical discrepancies are apparent from the
discussion. Moreover, we find consistent deviations from the theor-
etical predictions when applied to materials research results. We
will point these problems out briefly here, then in the next
section propose practical solutions.

Referring to Eq. (1), we see that it is dimensionally incor-
rect, except when D = 0. Several ways have been proposed to
rectify this situation and some of the more promising approaches
will be presented later.

Another drawback to Eq.(1) is the failure to provide for a
"true" length for the irregular curve. A "true" value for a fixed
(nonfractal) curve would correspond to the length of the curve as
M - 0. The length of a fractal curve, however, is expected to
approach infinity as - 0. In order to obtain a fixed value for
the length of the curve, arbitrary values of y have been selected
by various researchers. This procedure is subjective and unsatis-
factory.

A clearcut physical definition of the meaning of the fractal
dimension D is missing. Attempts have been made to clarify this
unclear situation, and will be discussed in the next section.

A major discrepancy arises with the fractal plots of irregular
planar curves such as fracture profiles. Instead of a straight line
extending without limit in both directions, the fractal plot is
curved. Asymptotes tending to zero slope appear at large and small
values of w. Thus there is a smoothly bending curve, the reverse
of the "sigmoidal" kinetic reaction curves of chemistry (Underwood,
1991). These so-called reverse sigmoidal curves (RSC), or segments
thereof, occur without exception in fractal plots of natural irreg-
ular curves. If the investigated range of w is too small, all that
is observed is a segment of the RSC (Rigaut, 1990).

This nonlinear behavior in the fractal plot is a priori
evidence that self-similarity does not exist, and that the curve is
not fractal. However, this evidence is blandly dismissed or
ignored, and cutoff values are designated to exclude those portions
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of the fractal curve that inconveniently do not conform to prior
theory. And merely by drawing a straight line through the curved
fractal plot does not constitute convincing evidence of fractal
behavior.

Similar objections to those listed above can be raised against
the H-M relationship. There are dimensionality problems, a lack of
linearity in the fractal plot, and a requirement for constant
island shape. Inspection of Eq. (4) reveals that its dimensionality
is not correct, except for D = 1. A possible way to circumvent
this deficiency is proposed later. Another problem with Eq.(4) is
the requirement that all islands must have the same shape. Moreover
if serial sectioning is employed, the shape must remalin constant
from section to section. It is highly unlikely that the shapes of
the islands from an irregular fracture surface conform to this
condition. We also find, contrary to the predictions of Eq.(4),
that the plot of log A vs log L is not linear indefinitely. In
fact, data from a series of Koch snowflakes demonstrate this
immediately because the area curve converges to a constant value
while the perimeter length proceeds to infinity.

Again, we find that much of the published data that claim
linearity in the fractal plot can only do so because of the limited
range in perimeter length (and perhaps because only one island is
followed from section to section!) Feder (1988) also questions the
validity of D determined from insufficient data.

RECONCILIATION OF DISCREPANCIES

Several proposals have been advanced to correct the dimen-
sional inequalities in Egs. (1) and (4) (Huang, et al. 1990). One
way to make Eq.(1) dimensionally correct (Underwood, 1985) is to
substitute a dimensionless ratio for g, according to

L(n) = Lo (n/ng ™° (5)

where . is an arbitrary constant with dimensions of length; its
magnituae does not affect the slope of the fractal plot. This
equation satisfies the dimensional requirements and, in general,
L(n) is proportional to L. When n = a,0r D = 1, L(n) = LW
Similar manipulations of Eq.(4) to make it dimensionally
correct give
A =2, (L/L) 2/0 (6)

where L, is an arbitrary length constant and A, has dimensions of
length squared. The slope of the log-log plot of A vs L, is not
affected by the magnitude of L  nor is the value of D chgnged by
these normalizing constants. However, since A tends to a constant
value while L_ increases indefinitely, in the 1limit we would
anticipate thag D -+ e .

The fractal dimension in Egs. (4) and (6) applies to the
perimeter of the loops or islands. Mandelbrots original treatment
clearly reveals he is dealing with a two-dimensional figure. Thus,
later attempts to assign a fractal dimension of (D-1) to the perim-
eter lengths are questionable (Mecholsky, et al., 1989). Moreover,
Feder (1988) believes the exponent should be D, and not 2/D.

Theoretical definitions of 'fractal' and 'fractal dimension'
have been a subject for much speculation. Mandelbrot has recently
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proposed a new definition (Feder, 1988): "A fractal is a shape made
of parts similar to the whole in some way." For a fractal Brownian
function, Feder (1988) lists the attributes, both self-similar and
affine, of five different D's. The physical meaning of D is also
unclear. An indirect way to describe its characteristics is by
comparison with other parameters that have simple physical mean-
ings. In one study (Underwood and Banerji, 1986), a close simil~
arity between plots of D and three dimensionless roughness param-
eters R, R| and Rg vs fracture surface configuration was demon-
strated. R, is sensitive to the local shape of the curve, while R
and Rg can 'increase either by increased tortuosity or by higher
peaks. Thus, it appears that the attributes of shape, roughness and
local configuration of a curve are factors that influence D.

Perhaps the most important problem with the fractal treatments
of profiles and slit islands is the lack of interconsistency
between the R-M and H-M theoretical treatments. Most experimental
results are also widely divergent. On the one hand, Eq.(1) (or Eq.
(5)) applies to open or closed profiles and the variables are curve
length and yardstick length. Area does not appear in their formu-
lation. A vertical section is generally used to generate the pro-
file. On the other hand, Eq.(4) (or Eq.(6)) applies only to closed
loops and the variables are area and perimeter length. w does not
appear explicitly in this equation. A horizontal section (or
sections) is generally employed to generate the islands (or lakes).

In spite of these differences, both methods depend on sections
cut through a nonplanar surface. A planar section, regardless of
its angular position, should relate geometrically to that surface,.
Basically, if any irregular surface of any configuration is cut by
a planar section, the ensuing trace should be related to the
surface from which it came. Thus, it does not matter, in principal,
if the section plane is 'vertical' or 'horizontal' or in between.
The general stereological equations relating surfaces and their
traces are still valid (Underwood, 1970). Geometrically speaking,
the R-M and H-M relationships must be related. So it is not
unreasonable to expect that an underlying relationship exists
between these two methods.

What is desired is an expression that combines both Egs. (5)
and (6) and retains the three variables: A, Lp and §. One of the
more promising relationships appears as

LyLy = (A/Bg) " (n/n )"0 (7)

A similar expression, used in another connection, has been found in
Feder (1988). Under the appropriate conditions, Eq. (7) yields
either Eq.(5) or (6). If a profile is under investigation, the area
term is held constant and we have

log(Ly/L,) = log K' + (1-D)log(n/n,) (8)

which is comparable to Eq. (5). If islands are being studied with
constant , we can write

log(A/AO) = log K + (2/D)1og(Lp/L0) (9)

and this gives the same value of D as Eq. (6). The shape restric-
tion noted previously for Eq.(6) still applies; however, it can be
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circumvented by a different approach.

Using the assumption-free equations of stereology, the H-M
fractal relationship can be generalized to be independent of the
shape restriction. An appropriate equation for planar loops of any
configuration was published without proof by Tomkeieff (1945). The
two-dimensional form (Underwood, 1970) is

A=TI;L, /s (10)

where A and L_ are as before, and E} is the island mean intercept
length. Compaﬁison with Eq.(4) reveals that the quantity (I;/n) is
akin to the shape coefficient. In Eq.(10), however, there are no
restrictions on the shape of the islands. Unfortunately, L, is not
constant and should be expected to vary with island size ang shape.
For example, L, decreases from 0.45 to 0.17 for the first six
figures in the Koch snowflake series. Thus, Eqg. (10) has three
variables to cope with,
An alternative way to present Eq.(10) is to combine factors as
indicated by
log(A/L,) = log(1/=) + log L, (11)

which predicts a straight line of unit slope for closed loops of
any shape. A plot of Eq.(11) for the first six Koch snowflake
figures confirms this linear behavior nicely. A fractal version of
Eqg.(11) that parallels Eq.(6) can be written

A/E) = K| (LyLy) ' (12)

where K, and L, are constants with dimensions of length. Now, if
loops with irregular perimeters possess fractal characteristics,
the slope will equal 1/D and not unity (as in Eq. (11)). The values
of E; can be obtained for individual islands by image analysis, or
else Eq.(10) can be used. In some cases, an average value of L, for
all islands may prove feasible. If required, g may be introduced
into Eq. (12) as in Eq. (7).

The requirement for a "true" length or "true" surface area
crops up frequently in the literature. At the same time, there is
a need for an objective way to linearize the fractal plot, and thus
obtain a constant value of D. A procedure that accomplishes all
these objectives is available in a general method that linearizes
RSCs (Underwood, 1991; Underwood and Banerji, 1986). The equation
can be written for profiles as

R (0) - R ()
log _; = K nDp" (13)

Ri(n) - Ry(w)
Where D‘is the modified (constant) fractal dimension. The profile
(or linear) roughness parameter R| is defined as the profile length

divided by its projected length. RL(“) is the only variable term in
the LHS of Eq. (13), so we can write in functional form

£(Ri(n)) = K n%! (14)

The similarity of Eq. (14) compared to Eq.(5) is apparent. Plots of
experimental data according to Egq. (13) give excellent straight
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lines, over a range in y of less than 1 pm to over 400 pm. Thus,
we obtain both linearity of the entire fractal plot and a constant
slope, which leads to a constant (modified) fractal dimension.
Moreover, the "true" length is forthcoming immediately from Ri(0),
a constant whose value is determined as n - 0. Although R (0)
cannot be measured experimentally, it can be determined unambig-
uously from the experimental fractal data (Banerji, 1987).

DISCUSSION

The original formulations of Richardson-Mandelbrot and Hack-
Mandelbrot for profiles and closed loops show many discrepancies.
It has been possible to rectify most of them, including dimensional
discrepancies in the equations, constancy of island shape restric-
tions, nonconstant value of D, nonlinear fractal plot, and lack of
provision for a "true" curve length. Some indications of the
physical meaning of D have emerged.

Interpretations of the experimental data have suffered from a
tendency to make subjective decisions. In this regard, straight
lines are frequently drawn through curved portions of the fractal
plot, ostensibly to obtain a local fractal dimension. The actual
data do not always suppport these ad hoc decisions. Another common
mistake is to relate a certain range in n (from the fractal plot)
to a size range of microstructural features (such as particle
spacings) in the fracture surface (Dauskardt RH et al.,1990). This
procedure is incorrect because each point on the fractal curve
comes from the entire apparent curve length, and cannot be related
to features that occupy only portions of the profile length.

Even more important than the detailed inconsistencies of the
R-M and H-M relationships is the lack of agreement between these
two methods. Procedures for unifying the two fractal equations are
proposed. One approach combines the two original expressions into
one equation with three variables: A, Lp and v, according to

LyL, = (A/Ag)"2(q/q )10 (7)

This expression still retains the original requirement for constant
island shape. A method that avoids the shape restrictions of H-M
invokes the fractal form of Tomkeieff's stereological equation for
closed planar figures

A/Ly = K| (LyLy) '/ (12)

This equation contains no shape restrictions.

Another important inference about the irregular curves of
nature can be drawn from the evidence presented above, and is based
on the breakdown of the prediction of linearity in the fractal
curve. Fractal plots that have the RSC shape, that exhibit
asymptotic behavior as § - 0, and that have a constant "true"
length must derive from fixed curves, rather than fractal curves.
The basic requirement of self-similarity is lacking, so as the
measuring unit gets smaller and smaller, the length of the fixed
curve must converge to a constant value. As Falconer (1990) puts
it, "There are no true fractals in nature."
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CONCLUSIONS

(1) An irregular natural curve cannot be deemed fractal until
it is demonstrated to be fractal. One of the best ways to check
for "self-similitude" is through the linearity of the entire
fractal plot.

(2) The usual fractal plots of nature have a reverse sigmoidal
shape. This behavior is opposed to the straight lines obtained by
mathematical models or special geometric figures.

(3) Any sectioning plane, regardless of its angle or position,
that cuts an irregular surface, should be stereologically related
to that surface. This applies regardless of whether sections are
horizontal, vertical or intermediate, and whether profiles, loops
or intermediate configurations are generated.

(4) The irregular curves of nature are not fractal but are
curves of fixed configurations. Thus, as the decreasing magnitude
of the measuring unit p approaches the magnitude of the smallest
segments of the fixed curve, the length of the curve must converge
to a fixed value.
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