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ABSTRACT

Two directions in which stereology may evolve in the future are sug-
gested. First, the use of ideas of mathematical morphology enables the
estimation of functions describing the local properties of a structure.
Secondly, the integration of stereology into model building within its
user disciplines enables prediction of properties of a diverse range of
materials on the basis of their geometrical structure.
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L INTRODUCTION

Twenty-five years ago a group of diverse scientists, brought
together through the enterprise of Hans Elias, distilled a collection of
techniques for interpreting sections and projections which were used in
common by their various disciplines. Those pioneers of stereology had a
vision of the scope of the new subject in extracting structural informa-
tion which has not yet been completely fulfilled. Indeed some potential
users of stereology seem disappointed when they discover its limitations.

One cause of disappointment is the focus upon global rather than
local properties. While useful as a summary, a few global parameters
such as Vy and Sy cannot be expected to encapsulate the intricacies of a
particular structure. Examples of local properties which have received
attention from stereologists are spherical particle size and membrane
thickness. Each of these can be recovered in a distributional sense
from cross-section data. The techniques of mathematical morphology offer
the possibility of stereological estimation of many other facets of local
structure. Rather than estimating only parameters, entire functions can
be estimated, providing much richer information about a structure.

Although stereology may not have yet reached its full potential,
it has been suggested (Ripley, 1981, Chap. 9) that it may be heading
tovards obsolescence. Certainly, such technological developments as
X-ray tomography (Shepp and Kruskal, 1978) and the tandem scanning
reflected light microscope (Boyde et al., 1982) enable direct
3-dimensional measurements in some situations.
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I would argue that stereology will survive in the era of 3-dimension-
al image analysis, although its role may tend to be more interpretative
and less predictive. Traditionally stereology has been concerned with
providing higher dimensional predictions on the basis of lower dimensional
information. However it can also play the reverse role of providing a
lower dimensional interpretation of a complicated higher dimensional
property. In fact integral geometry, one of the parent subjects of stere-
ology, fits better into the latter framework than the former. Software
for 3-dimensional image analysis will probably exploit some stereological
principles. Finally, stereology has a role to play in model building
which is likely to remain important during the next twenty-five years.

2, STEREOLOGY AND MATHEMATICAL MORPHOLOGY

Mathematical morphology, which has developed in parallel with
stereology (see Serra, 1982), does focus upon the local properties of
images, although not necessarily with the aim of 3-dimensional or
statistical interpretation. One of its basic ideas is the use of struc-
turing elements, which can be regarded as local sampling frames which
are moved continuously across an image, each position resulting in a
value of O or 1. This idea falls readily into the framework of stereology.

Stereological formulae are essentially applications of Fubini's
theorem in which part of the integration can be expressed as expectation
with respect to a lower dimensional sampling scheme. Let F denote a flat
(usually a plane) or a grid of parallel flats, and let T denote a struc-
turing element which can be contained in Some F. Let p and v be measures
of flats and structuring elements respectively; often these measures are
motion invariant but not necessarily. Finally, pp and Vg denote measures
of flats containing T, and of structuring elements contained in T.

It will be assumed (after appropriate normalisation if necessary)
that the above measures satisfy the Fubini-type relationship

vF(dT)u(dF) = uT(dF)v(dT) (1)
and also that the total integral

Sy, (ar)
is constant for all T.

Let X be a bounded, deterministic specimen set containing a feature
set Y, and let f be a measurable function assigning O or 1 to each inter-
section YNT. By integrating f with respect to each side of (1), we obtain

SUf(xnT) L (aT) } n(ar) = Jun(@F) LSE(Y 0 T) v (dT) (2)

If f(¢) is defined as O, there is no need to explicitly specify the
ranges of integration in (2). If F is generated randomly with measure

proportional to u, restricted to flats intersecting X, then (2) can be
expressed as

E(0) = 8/c(X) (3)
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where GF = Jf(YnT) VF(dT)
0 = [Ef(YnT) v (ar)
and c(x) = J u(dF)/fuT(dF)

FnX#¢

In other words, the integral involving positions of the structuring ele-
ment within a flat is proportional on average to the corresponding spa-
tial integral. The constant of proportionality depends on the size and
shape of the specimen.

A simple illustrative example is the case when T is a single point
governed by uniform measure, F is a plane governed by motion invariant
measure and f is the indicator function of Y. Equation (3) reduces to
the familiar form

E(A(YnF)) = v(Y)/M(X)
where A, V and M denote area, volume and mean caliper diameter respectively.

A more interesting example is constructed by letting T be a pair of
points separated by a fixed distance r. The measure v is specified by
locating the first point according to surface measure over the boundary
9Y, and then drawing a line through this point with density sin 6 relative
to isotropic measure, where 6 is the angle between the line and the tan-
gent plane to 3Y (assumed piecewise differentiable). The second point is
located on the line at distance r from the first point, in the outwards
direction relative to Y. Once again F is a plane and | is isotropic
uniform measure. In order to satisfy equation (1), v_ is constructed by
locating the first point according to perimeter measure on dY N F, and
the second point at distance r from the first in the outwards direction
along a line through the first point and contained in F. The orientation
of this line has density sin 6 with respect to isotropic measure in the
plane. The function f indicates whether or not the second point belongs
to Y.

In order to interpret the resulting version of equation (3), first
note that

/v(dTr) = 71S(3y)

]

and va(dT) 2 B(3Y nF)

Let us define the conditional volume fractions, which describe the stru-
cture at a distance of r from the feature boundary:

p(r | 3Y) = [f£(ynT) v(dT) /78 (3Y)
and pp(r | 3vnp) = JE@Y ATV (AT) /2 BOY nF) .
Then (3) can be written as

2 E{B(3Y nF) pF,(rl YNF)} = TS(3Y) p (r | 3Y) /2M(X) .  (4)
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Equation (4) is similar in form to the classical stereological formula
E{B(3YnF)} = TS(3Y)/4M(X)

but deals with the second order properties of the structure. So far r
has been kept fixed, but by allowing it to vary (4) can be seen as a
method of estimating a function.

By taking F to be an isotropic uniform random line rather than a
plane, the analogue of (4) is

E{N(3Y n F) P, (x [3YnF)} = s(av)p(r | av)/2 M0 (5)

where N denotes number of boundary intercepts and M, denotes mean areal
projection. In this case pPp(r |3Yr1F) is simply the proportion of inter-
cepts for which the point at distance r in a direction away from Y also
belongs to Y. Equations (4) or (5) can be used in the usual way to
provide consistent ratio estimates of p(r lay).

In the preceding example, u was motion invariant but v was not.
Other examples can be constructed in which p is not invariant: for
example equations can be derived for vertical sections (Baddeley, 1984)
or area-weighted sections. Also T could be a triple of points, or even
more complicated. Equation (3) therefore encompasses a very broad class
of stereological formulae. The matter of which of these are likely to
be useful impinges upon the next section.

3. STEREOLOGICAL MODELLING

Although traditionally associated with images of real structures,
stereological principles also have important implications for the con-
struction and analysis of models, which exist only in the abstract. It
could be argued that the technique of dimensional reduction in model
construction predates stereology - mathematicians have for a long time
fallen into a pattern of first solving a one-dimensional problem and
then extending the conclusions to higher dimensions. Contemporary
stereology offers a formalisation of this process and provides insight
into some of the more subtle relationships between lower and higher
dimensions.

Twenty-five years ago there was a need for stereology to detach
itself from its user disciplines in order to be clarified and generalised.
Having developed its own identity, there is now a need for stereology to
become integrated into the quantitative modelling taking place within
the various sciences which first gave rise to it. In the past applied
stereology papers have exhibited a tendency to neglect the details of
how the estimated parameters are to be used in subsequent analysis,
concentrating instead on overcoming experimental difficulties associated
with the application of stereological techniques. The divorce of stere-
ology from subsequent modelling can lead to erroneous results. It is
a well-known phenomenon in statistics that substitution of a mean value
into a non-linear function does not in general yield the correct mean
of the function. In the context of modelling the properties of a spatial
structure, this problem can be circumvented by the two following methods.
Either the stereological parameters can be redefined so as to vary linearly
with the output of the model, or the variability inherent in the real
structure can be built into the model.
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An example of the former approach is Weibel's (1970) model for the
estimation of the diffusion capacity of a lung. Although the arithmetic
mean thickness of tissue barrier is an appropriate quantity to use in
estimating tissue mass, the harmonic mean thickness is appropriate for
estimating diffusion capacity. Both types of mean thickness can be
estimated simply from cross-sections; the implicit model consists of
planar barriers distributed in space.

The best known class of models following the second approach is
probably that of random sphere models, with centres distributed according
to a marked point process and radii specified by the marks. Mecke and
Stoyan (1980) give a formal account of the underlying mathematical model,
and numerous authors have addressed the numerical and statistical problems
involved in inverting the integral equations which arise for the radius
distribution. Authors are often vague as to their ultimate use of an
estimated size distribution: there is a danger that the particular func-
tional(s) of interest may be quite sensitive to the inversion procedure
adopted.

An understanding of the relationship between the geometrical stru-
cture of a material and its physical or physiological properties indicates
which stereological parameters or functions should be estimated. For
example, in modelling the liberation of composite mineral ores during
crushing and grinding (Davy, 1984) , certain functions emerge as
relevant summaries of particle size and shape, of the second order
properties of the ore structure, and of the interaction between the
fracturing process and the ore structure. In addition to determining
appropriate structural summaries, the integration of stereology into
model-building can in some situations result in the simplification of
the model to a more tractable form. An example is given by Davy and
Guild (1986, submitted for publication) in which stereological principles
are used in constructing a finite element model to predict the stress
and elastic properties of a composite material. The important structural
property in this case turns out to be the distribution of interparticle
distance, which is defined in terms of a Voronoi tessellation.

The rapid development of image analysis technology has created a
need for models wich can usefully interpret the large volume of available
data. Stereologists have a challenge to meet this need, but must be
prepared to combine their theory with other branches of science and
mathematics.
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