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ABSTRACT

The classical stereological unfolding problem for particle systems is studied. While previously
at most bivariate problems were solved, here a multivariate version is formulated. Then the
unfolding of the joint trivariate distribution of size, shape factor and orientation of spheroidal
particles is demonstrated using vertical uniform random sections. The formulation and solution
is design-based, first the integral equations are derived, then a numerical solution is discussed.
It is emphasized that under the conditional independence property of particle sections, the
unfolding problem studied can be decomposed into a series of two simpler problems. The
intensity Ny estimator is obtained in the first step which is equivalent to the Wicksell problem
of spheres. Finally an application of the results to the study of damage initiation in materials
is presented.

Keywords: Conditional independence, size-shape-orientation distribution, stereological unfold-
ing, vertical sections

1 INTRODUCTION

Consider a system of three-dimensional particles of a given shape spread in an opaque base and
observe its planar section. The problem may be formulated either in the design-based approach
where particles are fixed and the section plane is random or in the model-based approaches
where particles form a stationary random process. Defining some geometrical parameters of
particles one would like to evaluate their joint distribution from the observed parameters of
planar particle sections. The problem typically leads to integral equations between corresponding
joint probability densities, which are solved either analytically or numerically. Eventually, the
integral equation can be expressed in terms of joint distribution function of particle parameters.
Even in cases when the kernel function of the integral equation cannot be derived, Ohser and
Miicklich (1995) solved some problems using the simulations of coefficients of the discretized
integral equation. The following problems with two particle parameters have been solved: size
and shape factor for spheroids (Cruz-Orive, 1976), size and number of edges for polyhedra (Ohser
and Miicklich, 1995), size and orientation of platelike particles (Gokhale, 1996).

In the present paper it is shown how multivariate unfolding problems may be investigated
using the probabilistic interpretation of the kernel function in the integral equation. When a
suitably defined conditional independence property is satisfied the unfolding can be decomposed
into a series of simpler problems. The general theory is applied finally to the trivariate size-
shape-orientation distribution of ellipsoidal particles. Using the sampling design of vertical




190 BENES V ET AL: MULTIVARIATE UNFOLDING PROBLEMS

uniform random sections the relation between planar and spatial parameters is obtained. In a
statistical study, a numerical EM-algorithm (Silverman et al., 1990) is used for the real data
evaluation and the stability of solution is discussed.

2 UNFOLDING AND CONDITIONAL INDEPENDENCE

A bounded closed convex set in the I-dimensional Euclidean space R' is called a particle. Let a
fixed particle X be described by n geometrical parameters (real constants) z1, zg, ..., Z, which
correspond e.g. to the mean caliper diameter, shape factor, orientation, number of vertices etc.
A sampling design is represented by a random hyperplane p with probability distribution ¢ on
the parametric space of hyperplanes. Assume that the intersection Y = X Np # 0, then Y
is a random closed convex set in R~ called a particle section. Let 41, ...,y be geometrical
parameters describing Y, such that yy, ..., yx, & < min(n, m) correspond to properties of z1, ..., z,
e.g. 1, size, g,y shape factor etc. Let p(y1, ..., Ym|21, ..., Tn, T) be the conditional probability
density of y1,...,ym given z1,...,&, and given that the particle is hit by p. The upper arrow |
emphasizes that the distribution p depends not only on particle characteristics but also on the
sampling design Q.

Further assume that particles are randomly dispersed in R' with constant intensity N;. Con-
ditionally that the particles are all the same (just translates of X) denote by Ni_1(z1,...,2n)
the mean (with respect to @) intensity of particle sections in p.

In the following step given N; let particles be not all the same, they have a distribution with
probability density f(z1,...,%,) of parameters z1, ..., z, invariant with respect to translations in
R!. We are interested in particle sections observed in p.

The unconditional particle section intensity N;_; and probability density ¢(y1,...,ym) of pa-
rameters ¥, ..., Y, are defined by

Nl—lg(y17"'7ym): /~-/Nl—l(zl>“',zn)p(ylv"‘7ym|x17"‘7$n7T)f(x1,~~~7zn)dxl--dxn- (1)

Integrating both sides of (1) w.r.t. 1, ..., Ym it is obviously Nj_; = EN;_1(z1, ..., Tn)-

The stereological unfolding problem consists in the estimation of unknown probability density
f and particle density N; from the particle section distribution g and N;_1, which can be observed
and estimated from realizations of p. The first part of the solution is to establish the theoretical
relations.

The unfolding problem is described by an equation

Ni1g(Y1, -0 Ym) = Nl/../k(zl,...,zn,yl,.4.,ym)f($1,...,zn)dxl..da:n, (2)

for some nonnegative kernel function k.
To prove this formula we use (1) and put

Nl—l(xh ) zn)

Nl p(yh“'7ym|$17"'7z71»T)'

k(xh < Tns Y1,y "',ym) =
The following definition is useful for the simplification of an unfolding problem:
The section parameter y; is strongly conditionally independent of ys, .., ¥, given z1,...,2,
and @ if the kernel function & in (2) satisfies

k(l‘ly <y Ty Y1, ~--7ym) = kl(mlyyl)k2($27 ~Tnsy Y2, --7ym) (3)

for some functions k1, ke and any 41, ..., Ym, Z1, .., Tp-
It follows that under this property the unfolding problem can be decomposed into a series of
problems with smaller numbers of parameters:
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Let y; be strongly conditionally independent of ys, ..., y,n. Then there exist nonnegative func-
tions k1, kg and A(z1,ys, ..., Ym) such that
a) for any ys, ..., ym fixed

Niag(us s i) = Vi [ Ea(o1, 3R, 03, ) (4)
b) for each z; fixed
M1, Y2, o Ym) = /‘./kQ(sz,...71'117:[/2,...7ym)f($17...,(L‘n)dwz..dzn. (5)

In fact putting (3) into (2) and introducing function h leads (5) and (4) immediately.

The decomposition (4) and (5) of the unfolding problem (2) suggests solving in two steps:

a) given N;_y and g, for each fixed ys, ..., Y solve the "outer” univariate problem (4) with
respect to unknown N; and h,

b) for each fixed z; investigate the "inner” problem (5) with a simpler kernel function k,
which could be eventually further decomposed.

Further the aim is to investigate the unfolding problem with three parameters: size, shape
factor and orientation (colatitude) of spheroidal particles (either oblate or prolate).

3 SPHEROIDAL PARTICLES

An arbitrary ellipsoid in the Euclidean space R’ can be expressed by means of a symmetric
positive-definite square matrix W;. The ellipsoid E; centered in the origin of a coordinate
system is the set E; = {t € R', tW,"'t' < 1}, where W1 is the inverse matrix of W and ¢’ is the
transposed vector ¢. It holds that W; = O;L0Oj, where O, is an orthogonal matrix the columns
of which correspond to the orientation vectors of principal semiaxes and L is a diagonal matrix
with diagonal elements being the squared lengths of the semiaxes of an ellipsoid Ej. 0] is the
transpose of ;.

Consider a three-dimensional ellipsoid given by W5 = (w;;), i,j = 1,2,3, which is centered
in an arbitrary point ¢ = (z,y,2z) € R3. Now denote by p the plane ¢ = 0, and study the
intersection of ¢ + E5 with the plane p. The following result is a special case of Moller(1988):

The intersection (t + E3) N p is non-void if and only if e = 1 — £~ > 0. Denote U =

w11 —
Y Wa1 T W22 W23 1 wa1
- £ and Wy 3 = - — Way W then for e > 0
< i ) < war > e 22.3 < a3 Was > o < way ) (wa1 w31) >

(t+E3)Np={s€R? (s - U)Wsk(s—U) <€} X og, (6)

where o, means that a zero z-coordinate is added to (y,z) points and X refers to cartesian
product. Moreover, the length of the orthogonal projection of t + E3 onto the z-axis is equal to

2\/11)11.

3.1 Oblate spheroids

Consider spherical coordinates in R® where the colatitude is the angle to the vertical axis.
Then a vertical section plane p has normal orientation colatitude §* = 7 /2, longitude ¢* and the
distance d from the origin. Let the particle be a fixed oblate rotational ellipsoid E3 with semiaxes
a = b > c centered in the origin. The orientation of the main (shorter) axis is § (colatitude)
and ¢ (longitude). Under the condition that the particle is hit by p denote the semiaxes of the
intersection ellipse by A,C, A > C and by « the angle between the semiaxis A and vertical axis
(it is correctly defined whenever C' # A). The shape factor of the particle, its section, is defined
by s = c/a, S = C/A, respectively. It follows that 0 < s < 1, 0 < § < 1. For the general
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setting in Section 2 we have here in particular n = m = 3 with z; = a, 2 = 5, z3 = 0 and
n=A4p=5Sy=a
The spatial and planar parameters of a vertical section of a given ellipsoid are related by

sin(¢* —¢) = cotfcota (7)

7 A2
g = Vel A ®)

S

42
A = a1 ——, 9
s )

where

wl = a® — (a% — ?)sin® 0 cos?(¢* — ¢). (10)

These equations are calculated in a straightforward way from the relation (6).
We proceed by randomizing the sampling design to get conditional densities for the size-
orientation and size-shape problems of type (2). Denote by

E(B,z)= /ﬂ\/1—2281n2tpd(ﬂ
’ 0

the elliptic integral of the second kind, in particular £(%,z) = £(2).
Under the vertical uniform random sampling design the conditional distributions of particle
section parameters for the size-orientation and size-shape unfolding problems have densities

4 A cosf [1-(1- s2)(sin? @ — cos? § cot? @)
L+/aZ — A2sina sin? 6 — cos? &
for m/2—0<a<m/2,0<A<a, pp =0 otherwise, and

p1(A,CY|a',0,S,T): ) (11)

i A
IVa- 2

for s < § < s/vs?sin?f+cos28, 0 < A < a, py = 0 otherwise, respectively. Here I =
7b(a, 8, s) = 4aE(+/1 — s2sin 0) is the perimeter of the ellipse of particle projection (in a vertical
direction), b(a, 0, s) its mean breadth.

The proof of (11) and (12) consists of the evaluation of Jacobians

s 8% 22 5% -1/2
pa(A4, Sla,0,s,7) = ﬁ{(l-—s—z)[s1 sin 0+8—2005 6 —1]} , (12)

od 94 od  od

9A dor A as
Ji = , Ja=

99~ 9¢* 9¢* 94

8A da A as

For the size-orientation problem we start from formula (7) and

d=+Va?- Az\/l — (1 — s2)(sin? @ — cos2 6 cot? @),

for the size-shape problem we start from formula (8) and

2
. &Z-1
sin(¢" = 9) =4 1= (s? i2l) sin® 9’
obtained from (7)-(10).

The main result of this Section is the following Theorem concerning the unfolding problem
(2) of size-shape-orientation distribution. Let f(a,8,s),g(A,,5) be the probability densities of

spatial, planar parameters, respectively. Further denote D(a,f) = sin a—cos? 0, g B(s,8) =

sin f sin o
sin §/1 — s2.
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Theorem 1 The size parameter A is strongly conditionally independent of the shape factor S
and orientation o and the outer size problem of the decomposition is

© 4
NAg(A,a,S):2NV/A T (e, 5)da (13)

Jor some nonnegative function h and any fized ., S. Let H(a,0,8) = [3 fOS h(a,B,T)dBdT. Then
the inner shape-orientation problem for any fized a is

H(a,a, ) = %//K(a,S,H,S)f(a,b‘,s)sin&dﬁds, (14)

where
v K(a,$,8,s) = min(Ky(a, 6, s), K2(S,0,5)). (15)
Here for each fized 0, s
Ki(a,8,s) = E(arcsin D(a, 8), B(s, 8)) (16)
form/2—0<a< /2, Ki(a,, s)=0fora<r/2—0 and

Ky(S,6,5) = E(arcsin(ﬁ 1- ;—Z),B(s, 0)) (17)

for s < § < s5/v/s2sin?8 4 cos? 4, K5(5,8,s) = 0 for § < s and K5(5,8,s) = E(B(s,0))

otherwise.

Remark: The unfolding problem is solved in two steps, however, the estimator of Ny is obtained
in the first step as a solution of (13).

Proof of Theorem 1: In (11) and (12) we observe the strong conditional independence of size
on both shape factor and orientation and formula (13) follows using (4).
From formulas (8)-(10) it holds for fixed 6, s that

S =s[1+(s* —1)(sin? 6 — cos? @ cot? a)]71?, (18)

which means that the orientation and shape factor are conditionally functionally dependent.
Therefore the joint conditional density p(e,518,5,1) is degenerate and we proceed in terms of
distribution functions. Observe that the transformation S(a) in (18) is monotone increasing on
(0,%) for each fixed s,6. Therefore (Mikusinski et al., 1991) the joint conditional distribution
function

K(a,5,0,s)
E(B(s,0))
is equal to the upper Frechet bound of marginal conditional distribution functions
Ix"l(a,&, 5) ](Q(S, 0, 5)
E(B(s,0))" £(B(s,9))’

P(a, S10,s,1) =

which implies (15). The functions K7, K, follow from (11), (12):

« (4 — (1 — $2)(sin? 0 — cos2? 2
Kl(a,e,s):/ cosf [1—(1—s*)(sin cos? f cot ﬂ)dﬂ,

z_gsinf sin? 4 — cos? 3

and s 2 -
- _ s 2 2 2 -1/2

I{2(57 0, S) = /S 1_1—2{(1 - 37)[1—‘ sin” 6 + STCOS 60— 1]} / dT.

(14) is thus obtained using the Fubini theorem.
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3.2 Prolate spheroids

Consider now a system of prolate rotational ellipsoids with semiaxes a > b = c under the same
notation as in the previous subsection. The unfolding problem for joint distribution of spatial
parameters (a, 8, s) from planar parameters (4, a, S ) cannot be derived exactly in the same way
as in the oblate case. It will be shown later that in the prolate case the parameter A is not
strongly conditionally independent of 5 and « given a, ,s.

However, an analogous way exists, by including the shorter semiaxes ¢,C in the analysis
instead of a, A, respectively. In fact the triplet c,8,s yields the same information as a,6,s.
Therefore solution of the unfolding problem between joint probability densities f(c,8,s) and
g(C,, §) of spatial, planar parameters, respectively, is satisfactory for practical statistical pur-
poses.

First let the particle be a fixed prolate rotational ellipsoid E3 centered in the origin.

The spatial and planar parameters of a vertical section of a given spheroid are related as

sin(¢* —¢) = cotftana (19)
[T (2

d = S_CTC; (20)

22 .

C = ¢y/1——, 21

wiy @D

where d is the distance of vertical section from origin and
wiy = ¢ + (a® — ¢?)sin?  cos’(¢* — ¢). (22)

Formulas (19)-(22) again follow after some calculation from (6).
Further we proceed analogously to the previous subsection, here size is represented by the
smaller semiaxis. Let

Z(s,0) =1+ (s72—1)sin®0, M(s,0) = Z%}

Under the vertical uniform random sampling design the conditional distributions of parti-
cle section parameters for the size-orientation, size-shape unfolding problem have probability
densities

C  cosf |1+ (s~2—1)(sin®# — cos? § tan® o)

4
pl(C, a|C,0757T) - IMCOSQ sin26’ — Sin2 o 5 (23)
for0<a<¥f,0<C <ec, pr =0 otherwise, and
4 c S% 2 a2 2 .2 241-1/2
p2(C, Sle,0,s,7) = EW?[(S — 5%)(sin? 6 + s” cos® 0 — §%)] , (24)

for s < § < /s2cos20+sin?0, 0 < C < ¢, pp, = 0 otherwise, respectively. Here L =
7b(a,8,5) = 4¢Z(s,0)E(M(s,0)) is the perimeter of the ellipse of particle projection (in vertical
direction), b(a, 8, s) its mean breadth.

The proof of formulas (23) and (24) consists of the evaluation of Jacobians

od  2d od  9d

9C  da acC 3
Jl = ) J2 =

9¢*  8g* 8¢* 99"

aC da ac BN

For the size-orientation problem we start from formula (19) and

d=+c2=C%/1+ (s72 — 1)(sin? § — cos? ftan? ),
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for the size-shape problem we start from formula (20) and

S2 _ g2

e ) = —————, 25

cos(¢” — ¢) (1-s2)sin?9 (25)
obtained from (19)-(23).

Remark: For the longer semiaxes it holds that d = % s%a? — S? A2, the Jacobian of this
transformation (together with (25)) cannot be factorized and the negative result stated at the
beginning of this Subsection follows.

Concerning the unfolding problem of size-shape-orientation distribution we get the following

result.

Theorem 2 The size parameter C is strongly conditionally independent of the shape factor S
and orientation « and the outer size problem of the decomposition is

Nag(C,a,8) = 2Ny hic,a, §)de (26)

oo C
/C Vet — (2
for some nonnegative function h and any fized o, S. Let H(c,«t,5) = [ fOS h(e,B,T)dBdT. Then
the inner shape-orientation problem for any fizved c is

H(c,0,8) = //Ix (a, 5,0,5)f(c,8,s)sinfdbds, (27)
where
K(a, 8,0,5) = maz(0, K1(a,0,5) + Ko(S5,0,5) — / Z(s,0)E(M (s,0))). (28)
Here for each fived 6, s
Ki(a,8,s) =1/Z(s,0)E(arcsin(cot f tan @), M(s,8)) (29)

for0< a <6, Ki(a,0,8) =~/Z(s,0)E(M(s,0)) for a > 6 and

Ky(S5,0,8)=1/Z(s,0)€ [arcsin( (1 0)1/ ) M(s, 0)} \/1— ¢Z(s ) — (30)

for s <8 <V/s?cos? 0 +sin® 6, Ky(S,0,5) =0 for § < s and Ko(S,0,5) = /Z(s,0)E(M(s,0))

otherwise.

Proof: In formulas (23) and (24) we observe the strong conditional independence of size on both
shape and orientation and formula (26) follows using (4).
From formulas (19)-(21) it follows that for fixed 6, s it holds that

S = \/52.’_(1_32)(sin20—coszﬁtan2 a), (31)

which means that orientation and shape factor are conditionally functionally dependent so the
joint conditional density p(a, $16,s,1) is degenerate. Observe that the transformation S(a) in
(31) is monotone decreasing on (0, %) for each fixed s,6. Again by Mikusinski et al.(1991) the
joint conditional distribution function

K(a,S5,0,s)
VZ(s,0)E(M(s,0))
is equal to the lower Frechet bound of the marginal conditional distribution functions
I(l(a [ S) Ifz(s [4 .S)
VZ(s,0)E(M(s,0)) /Z(s,0)E(M(s,0))’

P(a,510,s,1) =
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which implies (28). The functions K, K, follow from (23), (24):

. _ [%cosf 1+ (s72— 1)(sin? 6 — cos? g tan? 8)
(e 6,) = /0 cos 8 sin? @ — sin? 8

dap,

and

S 72
Ky(5,0,s) = / T—[(T2 — s¥)(sin? 0 + s* cos® § — T)]~1/24T.
s S

The last integral was found in Gradstejn and Ryzik(1962), p.261.

To summarize the problem of spheroidal particles and match formulas from Sections 2 and
3 observe that the unfolding problem (2) for n = m = 3 parameters has been decomposed
into (4) and (5) (21 is the size parameter) which correspond to formulas (13) and (14) (oblate
case) or (26) and (27) (prolate case). The inner problem (14) or (27) is formulated in terms
of distribution functions instead of in terms of probability densities as (5) since the conditional
probability density which forms the kernel function does not exist.

4 NUMERICAL SOLUTION

Unfolding problems belong to a class of inverse problems (Coleman, 1989) which are often called
ill-posed, that means a small error in the evaluation of input quantities may cause a large error
in the resulting estimator. It is difficult to study this property by functional-analytic methods.
Typically a discretization method is used for the solution of unfolding problems. It transforms
an integral equation onto a system of linear equations. The condition number of the matrix of
this system can be used as a criterion for the stability of solution.

We present the method of solution of unfolding equations which is based on standard dis-
cretization techniques (Ohser and Miicklich, 1995). The method is described in terms of oblate
spheroids. In the prolate case one can proceed analogously.

Both planar and spatial parameters are classified into a trivariate histogram with some class
limits for size, shape factors and orientations a;, 4;,6;,;, 5,5, % = 1,...,7. For simplicity
we deal with equal number of classes r. Generally this number need not be the same for each
parameter. In the discrete approximation of the distribution of particle parameters it is assumed
that f(4,7,k) = P(a = a;,0 = 0j,s = sg) with¢,7,k = 1,..,7, are probabilities of discrete values
of spatial parameters. We denote by N4(t, 7, k) the input histogram of observed particle section
parameters (4;_1 < A < 4;, ajo1 < a < aj, Sy < § < Sg_1) per unit area using the VUR
sampling design. Here Y ;;x Na(4,5,k) = Ny is the mean particle section number per unit area
of section planes observed. In practice the VUR sampling is realized by the use of several vertical
section planes with different ¢*.

The stereological unfolding involves the estimation of the spatial distribution f(¢,j,%) and
particle number density Ny given N4(4,7,k). The problem is solved in two steps corresponding
to the procedure in previous section:

a) For each fixed orientation and shape class (f, k) solve the size unfolding problem

Na(i,d,k) = Nv > pub(l,5,k), i=1,...,7 (32)
I>i
for unknown Ny and h(l,7,k). E.g. by using a; = A; = b’ for a constant b > 1 we get (cf. Ohser
and Miicklich, 1995) p; = 2b'z;_;, where 2z = /1 = b26-1) — /1 — b2, The solution of (32) is
then obtained by means of the EM-algorithm (Silverman et al., 1990). The estimator of Ny
follows from the condition ) h(l,4,k) = 1.
b) In the second step denote

2 . . .
Pinjk = ;[K(OAJ‘, Sty 05y 80) — K(aj—1, Sk, 05, 8) — K (g, Sk—1,0i, ) + K(j_1, Sk—1, 0, 80)]-
(33)
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Here K (e, S,0,s) is the function defined by (15)-(17).
Now the discrete version of the remaining shape-orientation problem is for each fixed size
class [ is

where f(I,7,n) is the desired histogram of spatial parameters. Use the EM-algorithm with A-th
iteration step

Mg B\ s
f()‘+])(l,i,7’l) — f ({Jvn) Z h(lijl;)Pm]k, (35)

in ik ujk

where tin = Y55 Pinjk, Wl = 2oin SM(1,1,7)Pinjk- As an initial iteration fO)(1,4,n) = h(l,i,n)
is sufficient. After more than ten steps of iteration in (35) we get the desired estimator

f(l,3,n), l,3,n = 1,..,7 of spatial size-shape-orientation distribution.

5 APPLICATION

The developed method was used for the unfolding of particle size-shape-orientation distribution
in a metal matrix composite material. A chill cast Al-1 wt%Si composite made in Pechiney,
France, has been heat treated by dissolution annealing at 540°C for 6 h and slow cooling (18°C/h)
to 20°C in order to obtain precipitation of platelike Si particles. Aside from a very small number
of exceptions the particle shape can be approximated by oblate spheroids or prisms. Uniaxial
tensile tests using cylindrical specimens of diameter 8 mm and length 60 mm were carried out.
Brittle silicon particles embedded in ductile aluminium matrix do not deform plastically and
particle cracking has been expected during deformation. In order to study the damage of Si
particles metallographic samples were prepared from both nondeformed and deformed-up-to-
fracture (strain 20 %) materials. The samples were cut randomly parallel to the tensile axis to
follow the VUR sampling design. Quantitative metallographic analysis has been performed by
image analysis technique using IBAS-Kontron analyser connected to a light microscope.
The discretization of parameters used is the following:

a=Aj =V, jez, si=5i:(1—%)ﬂ, ai=0; =il i=1,.1 (36)

Here b = 1.756, x = 1.5 are chosen constants, r = 8 the number of classes, and A = 7~ The
matrix P of coefficients p;jx for the inner problem (34) has size 64 x 64 and condition number

cond(P) = ||P|| ||P~!|| = 75.75 using the norm ||P| = \/2ijkt P This relatively acceptable
value (cf. Gerlach and Ohser, 1986) justifies the use of the method.

Fig. 1 presents spatial trivariate size-shape-orientation histograms evaluated according to the
developed methods. The histogram on the left results from the input sample S1 of size n = 10017
of all particle sections, while the histogram on the right was evaluated from the sample 52 of
n = 1058 particles on the same area with observed cracks in the deformed-up-to-fracture state.
The estimated number densities Ny = 210.107 ym =2 for S1 and Ny = 14.5.107% um =3 for $2
yield an estimator of the probability of damage P = 14.5/210 = 0.07 for the whole population
of particles. (It should be mentioned that not all cracks are observed in the section plane,
therefore for 52 it holds Nv = kN{, where N is obtained from the unfolding procedure. Under
the assumptions of platelike particles and at most one crack per particle it is k = 2, see Benes
et al.(1997) for a discussion of k£ when these assumptions are not valid.)

The goal of the trivariate unfolding method for the present application is that we are able to
refine the analysis of crack initiation in particles to each subclass of histograms in Fig.1. Thus
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we obtain a histogram of probabilities of damage which is an input to parameter estimation of
statistical models for damage initiation such as the Weibull formula, cf. Benes et al.(1997).

a
. b .
- §1ze size
DT b %4
R NS '?:;“.,-'.-'
e 0328
Priifiii. Prediiii
Tresepie : :?dié?;
; o
<

Fig.1: Estimated spatial size-shape-orientation histograms estimated from samples S1 (a),
S2 (b). The volume of three-dimensional balls observed is proportional to Ny f(3, j, k) values.
The axes are scaled according to formula (36) and they intersect in the point corresponding to
1=7=Fk=1.

6 DISCUSSION

Moller(1988) proved that it is possible to reconstruct an ellipsoid completely from three parallel
sections. IHis result is very useful, but it does not close the discussion about the spheroidal prob-
lem. E.g. his method is not generally applicable in quantitative metallography for two reasons.
First the preparation of appropriate parallel sections in hard materials with small particles is
difficult and in some cases impossible. For the same reason also the excellent assumption-free
methods of stereology (Karlsson and Cruz-Orive, 1992) cannot be used in all metallographic
applications. On the other hand a vertical plane is easily obtained and may have a physical
meaning (e.g. being parallel to deformation axis, cf. Benes et al., 1997).

Secondly Moller’s method works for perfect ellipsoids only, while in practice the shape as-
sumption is often an approximation. There is an empirical evidence that the presented unfolding
solution is more robust against the assumption of shape. Therefore we revisited the 70 years old
problem to pose a new three-parametric ill-posed problem, the solution of which is acceptable
for practice when using modern numerical techniques.
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