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ABSTRACT

Measurement of optical densities in different parts of an organ or tissue requires an
objective segmentation of these different morphological ~structures in images of
histochemically stained sections. However, in biological tissues, the relevant morphological
structures often contain a wide range of pixel values which hampers the use of segmentation
procedures based on thresholds, on region-growing or on a-priory knowledge of the shape of
the segments. Segmentation based on multivariate statistics requires customised programs or
dedicated hardware. Therefore, an automated segmentation procedure based on statistical
criteria has been developed that could be used in the context of a readily available image
processing package. The procedure is based on minimising the pixel value variation within
each segment while maintaining the spatial continuity of the different segments in the image.
In this procedure the original image is thresholded to make it binary and then subjected to
binary operations (erosion and dilatation) to correct the spatial noise. The original image is
then masked with the resulting binary image and its inverted complement. Of both partial
images the variation in pixel values is measured and the pooled variation is calculated. The
relative decrease of this pooled variation compared to the variation in the original image is
used to decide whether or not the segmentation of the original image is considered relevant. If
so, the image is split and the procedure is applied recursively on both resulting images until
the reduction in variation no longer justifies a further segmentation. Reproducibility of the
developed segmentation procedure was tested by applying it to pairs of normal and inverted
images and to images with a compressed pixel value histogram. The proposed segmentation
algorithm can be used for the segmentation of a known organ or tissue into functional zones,
using a combination of fast image processing functions and statistical decisions.
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INTRODUCTION

Histochemistry, immunocytochemistry and in situ hybridisation are widely used in
microscopic morphological research to show the presence of substances like enzymes,
proteins, hormones and mRNA’s in sections of fixed biological tissues. Quantitative
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densitometric analysis of the products of these histochemical staining procedures plays an
increasingly important role in the study of gene expression and functional zonation of tissues
and organs (Jonker et al. 1997; Moorman et al. 1999). The aim of such a biological study is to
distinguish functional zones within an organ, based on the optical density of a specific staining
product. The shape of the structures, the differences in density and those of the density
gradient between zones are unknown and may differ depending on the experimental or
pathological condition of the tissue. This uncertainty hinders the use of knowledge-based
segmentation procedures (Bartels and Thompson, 1994). Also segmentation based on tissue
architecture like the spacing of cells (Geuzebroek et al. 1999) can not be used because most
histochemical staining methods do not allow the segmentation of a clear marker for each cell.
However, segmentation is a prerequisite for the extraction of useful densitometric information
from optical density images of biological specimens.

The segmentation of images of biological specimens is hampered by the high
variability of pixel values within morphologically continuous regions in the tissue. This pixel
value variance, for instance non-staining nuclei swrrounded by staining cytoplasm, is a
property of the tissue and not the result of Poisson noise or technical shortcomings and should,
therefore, be taken into account in the segmentation procedure. Simple or multiple thresholds,
based on the pixel value histogram (Gonzalez and Woods 1993; Russ 1994) will lead to very
fragmented segments riddled with holes. User intervention to correct this, either by manual
thresholding or editing, will lead to user bias, especially because the ultimate aim of the
procedure is to measure optical density levels in the resulting segments. Region-growing
algorithms require a set of criteria for exploration of the neighbourhood of the seed pixels
(Gonzalez and Woods 1993; Bartels and Thompson 1994). The variability within the regions
makes it impossible to set these criteria. Similarly, this high variability will prevent split-and-
merge algorithms (Bartels and Thompson 1994; Manousakas et al. 1998) from finding areas of
uniformity. Alternatively this multilevel segmentation can be approached by using
multivariate statistics, like cluster analysis. This procedure uses all variables known in
individual pixels to classify them in a set of mutually exclusive groups (Chatfield and Collins
1983); within a group the pixels are similar, while pixels from different groups are dissimilar.
This approach has been used for segmentation of pixel values in a time series dynamic
scintigraphies (Hannequin et al. 1990). The spatial context of pixels can be included in this
approach by using pixels values from synthetic images, created through some type of spatial
filtering, as extra variables (Bengtsson et al. 1994). These procedures are computationally
bulky, and require customised software and dedicated hardware (Bengtsson et al. 1994).
Therefore, we decided to try a poor man’s approach: development of a statistical segmentation
procedure that could be used in the environment of a readily available image processing
software package (NIH 1997). The procedure combines the fast image processing functions of
the NIH-Image package (thresholding, binary and mathematical operations and measurement)
with a statistical decision algorithm. The resulting image segments are spatially continuous
and the pixel value variation within these segments is maximally reduced. The method should
result in reproducible segments for images with the same overall structure but different pixel
value distributions. More exactly, the segmentation procedure should give identical results for
inverted images and for images with a compressed pixel value histogram. Application of the
procedure on serial sections of the same tissue should result in similar segments. The presented
segmentation procedure is based on a recursive sequence of pixel level thresholding,
morphological correction of the resulting binary images and a statistical decision on whether
or not to continue segmenting the resulting partial images.
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PROGRAM DESCRIPTION

All steps of the segmentation procedure will be illustrated with an image of a section of
a rat heart of 13 embryonic days hybridised with a radioactive probe for SERCA2 mRNA
(Moorman et al 1995; Fig. 1A; high pixel values are shown in black). The segmentation
procedure was developed as a macro for the image analysis package NIH-Image (NIH 1997)
and is written in the Pascal dialect of this package. However, the image processing functions
used are available in all image analysis packages, allowing this segmentation procedure to be
readily converted to other environments.

-
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Fig. 1. A. Optical density image of a section of a rat heart of 13 embryonic days of development
hybridised with a radioactive probe for SERCA2 mRNA and processed Jor autoradiography.
B. The same image after the application of a single threshold and binarisation.

Recursion. The main part of the segmentation procedure (Fig. 2) is a recursive
operation that consists of the thresholding  and binarisation of the input image, the
morphological correction of the binary image, the measurement of the pixel value variation in
the resulting image parts and the statistical decision whether or not the splitting of the input
image leads to a considerable decrease of the pixel value variation. If so, the input image is
split and the procedure is repeated for both parts resulting in a dichotomous tree of image
segments.

Thresholding. In the automatic threshold function of NIH-Image, the threshold is
defined as the pixel value that separates the histogram of the product of frequency and pixel
value into two equal parts, in effect using the pixel value as a weight factor in the histogram
separation. To avoid this weight factor, a thresholding function based on just the frequency
was incorporated in the procedure. This threshold was set at a point where the sum of
frequencies of the low value pixels was twice the sum of that of the high value pixels. This
was done to improve the resolution of the segmentation in the low frequency (= high optical
density) part of the histogram, where in our experience the interesting structures are
represented. After setting the threshold, the image is converted into a binary image (Fig. 1B).
Copying and inverting this binary image results in two complementary binary images, each
representing a phase of the input image.
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Fig. 2. Flow chart of the recursive part of the segmentation procedure.
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Binary morphological correction. After thresholding and binarisation the resulting
images have to be subjected to a series of binary erosion and dilation operations to correct for
spatial noise (Fig.3). Since the effect of erosion and dilation is dependent on the pixel
distribution in the image, correcting both binary images would result in images that are no
longer complementary. Therefore, we choose to start the iterative series of erosions and
dilations that form the morphological correction, always with an erosion in the lightest binary
image of the pair. The other binary image is then reconstructed as the complement of the
corrected image.

Fig. 3. A. Uncorrected binary image. B. Corrected binary image after an erosion - dilation sequence
(4 iterations).

Masking of the original. Both complementary binary images are used to mask the
original image by using a binary AND operation. This results in a pair of complementary
images (Fig. 4). In each segment a range of pixel values is present but the mean pixel value of
both segments is different (Fig. 5, recursion level 1).

Fig. 4. Pair of complementary images resulting from one sequence of thresholding, binary
corrections and masking of the original image.

Measurement and calculation of variation. In the input image and in each member
of the resulting image pair, the standard deviation of the pixel values (excluding the white
phase which represents the area occupied by the other segment of the image) is measured.
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From this standard deviation, the pixel value variation in the image is calculated by squaring
the standard deviation and multiplying by the number of non-white pixels minus 1.

Statistical decision. The variation of the two image parts is summed to calculate the
pooled variation after segmentation. This pooled variation is then compared with the variation
of the input image. The pooled variation will generally be lower then the input variation
showing that the segmentation of the image reduces the overall variation. When the reduction
of the variation exceeds a predetermined criterion, e.g. 30%, the segmentation of the original
image is considered relevant and the segmentation procedure is repeated for both image
segments thus leading to a dichotomous tree of image segments (Fig. 5). When not enough
reduction of the variation is reached the input image is considered to be an endpoint in that
branch of the image segmentation tree. When all image parts are marked as endpoints the
recursive segmentation procedure stops.
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Fig. 5. Image segmentation tree. Mean optical density (diamonds) and pixel value variation (bars) in
the dichotomous tree of image segments. The graph shows the measurement results after each
recursion of the segmentation procedure. Recursion level 0 is the original complete image.
The measured variation of each partial image is shown as a bar. The reduction of the pooled
variation with each recursion level is clearly visible

Combining resulting segments. During the course of the segmentation procedure the
thresholds that have lead to relevant splits are collected in memory. For the creation of a combined
image with all segments, these thresholds are sorted and applied consecutively to the original image.
After applying the same binary morphological corrections each segment is assigned an ordered pixel
value. The resulting segmented image thus resembles the original in the relative intensity of pixel
values (Fig. 6).
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Fig. 6. A. Input image. B. Segmented image with 5 segments. The decision criterion was set at 70.
Intensity coding of the segments in panel B is the same as in F, ig: 5

RESULTS AND DISCUSSION
Reproducibility

The presented segmentation procedure fulfils the requirements for reproducibility
stated on the outset. When the procedure was used to process images with an inverted pixel
value distribution, the resulting segmented images corresponded exactly (Fig. 7) with the
segments of the original images (Fig. 6).

Fig. 7. A. Inverted input image. B. Segmented image. Decision criterion set at 70. The segmentation
result in panel B is identical to that in Fig. 6B

Also shifting the pixel value distribution by compressing the histogram (thus
simulating the effect of poor lighting conditions or increased deposit of staining product) did
not affect the segmentation result. This reproducibility was achieved by carefully designing
two of the key functions of the procedure: the thresholding and the binary morphological
correction. The standard automatic thresholding function of NIH-Image proved unsuitable for
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our purpose because it uses a pixel value weighted frequency distribution. Such a weighted
threshold will always hamper the reproducibility of the segmentation procedure when applied
to inverted or pixel value shifted images. When just the frequency distribution of pixel values
is used to determine the threshold level, one guarantees that segmentation of those inverted
and shifted images will give results identical to the original. However, a prerequisite for this
reproducibility is the strict choice to start the binary morphological correction with an erosion
operation on the lightest image of a pair of binary threshold results.

Effect of the statistical decision criterion

The third key function in the presented segmentation procedure is the statistical
decision. The decision criterion is used in the recursive step of the procedure to decide whether
or not each splitting of the input image is relevant. A decision criterion set at 70 means that a
reduction in pixel value variation with 30% or more is required while a criterion set at 90 only
requires a 10% reduction in variation. Since the latter requirement is more readily reached,
more segments will result from a criterion of 90.

In a series of tests with optical density images of in situ hybridisations of heart and
liver, the effect of this decision criterion on the number of generated segments was tested. As
can be expected the number of resulting segments increases when the requirement for
decreased variation is relaxed (Fig. 8). Although the determination of the decision criterion
involves a subjective choice, the tests we did with a range of decision criteria shows that in all
tissues one can find a limited range of criteria from which the same number of segments
results. This indicates that in that range of criteria the segmentation result is not dependent on
the image contents. The preferred choice for a decision criterion should therefore be in the
middle of this range of decision criteria. Since a series of related images will probably have
similar pixel value distributions, once a decision criterion is set, segmentation of the whole
series will result in a similar number of segments in each image. Tests done with adjacent
serial sections of the same tissue confirm this.
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Fig. 8. Effect of the decision criterion on the number of recognised segments in the optical density
image of the 13 embryonic day rat heart. In the range of decision criteria of 60 to 85
(requiring 15 to 40 percent reduction in pixel value variation to split an image into two parts)
the number of segments remains constant.
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The customary way to treat the reduction in pixel value variation is to calculate the
variances of pixel values in stead of the variations. These variances can be compared with an
F-test, assigning one degree of freedom to the reduction in variance (Snedecor and Cochran
1982). However, the variances are calculated over such a high number of pixels that this F-test
will always give an extremely low p-value, necessitating an arbitrary choice of significance
level to use this test result. Because of this, it was decided to base the statistical procedure on
just comparing the variation of the input image and the pooled variation of the segmented
parts.

CONCLUSION

The segmentation procedure described above is based on thresholding and
morphological correction of segments, leading to spatially continuous areas with minimised
internal pixel value variation. The procedure has been successfully applied to images of
different biological tissues. Visual inspection of the results shows that the segmented areas
closely resemble those seen by the user. However, the procedure works without human
interaction and is therefore free of user bias. Comparison of the segmentation result with
human performance in tracing is not a valid test for accuracy of the procedure: different users
will place boundaries based on different implicit criteria. The presented method is detached
from user subjectivity by a pre-defined thresholding setting, a fixed binary correction
algorithm and adjustable statistical decision criteria. The latter only influences the number of
segments, adding extra segments does not affect the boundaries of those already placed. This
objectivity and the reproducibility of the procedure make it a valuable tool in the study of
functional zonation in biological tissues and organs. This segmentation procedure can be used
in the macro environment of a readily available image processing package (NIH 1997).
Although it is written in the Pascal dialect of NIH-Image it can easily be converted to other
image analysis packages that allow user-written inserts or macro programming,
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