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Introduction 

The LIP (Logarithmic Image Processing) Model is now recognized as a powerful framework to process 

images acquired in transmitted light and to take into account the Human Visual System. In this paper, 

we first recall the concept of Logarithmic Additive Contrast (LAC) for grey level images and we extend 

it to colour images. From this colour logarithmic contrast, various metrics are derived which possess a 

strong stability in presence of lighting variations or lighting drift. Moreover, thanks to the consistency 

of the LIP Model with Human Vision, it seemed us interesting to select a set of colours in the (x, y)-space 

and then to define their neighbourhoods for logarithmic metrics. The opportunity to compare them with 

Mac-Adam’s ellipses is discussed. 

I- Introduction, notations and recalls 

Introduced by Jourlin et al ([1], [2], [3]), the LIP (Logarithmic Image Processing) Model proposes first 

a physical and mathematical framework adapted to grey level images acquired in transmitted light 

(when the observed object is placed between the source and the sensor). Based on the transmittance law, 

the LIP Model proposes two operations allowing the addition of two images and the multiplication of an 

image by a real number, each of them resulting in a novel image. Such operations possess strong 

mathematical properties, as recalled hereafter. Furthermore, the demonstration by Brailean ([4]), of the 

LIP Model consistency with human vision, considerably enlarges the application field of the Model, 

particularly for images acquired in reflected light on which we aim at simulating human visual 

interpretation. 

In the context of transmitted light, each grey level image may be identified to the observed object, as 

long as the acquisition conditions (source intensity and sensor aperture) remain stable. An image f is 

defined on a spatial support D, with values in the grey scale [0, M[, which may be written : 

𝑓: 𝐷 ⊂ ℝ2 → [0, 𝑀[ ⊂ ℝ 

Note that within the LIP Model, 0 corresponds to the « white » extremity of the grey scale, which means 

to the source intensity, i.e. when no obstacle (object) is placed between the source and the sensor. The 

reason of this grey scale inversion is justified by the fact that 0 will appear as the neutral element of the 

addition law defined in formula (3). The other extremity M is a limit situation where no element of the 

source is transmitted (black value). This value is excluded of the scale, and when working with 8-bits 

digitized images, the 256 grey levels correspond to the interval of integers [0:255]. 

The transmittance 𝑇𝑓(𝑥) of an image f at x  D is defined by the ratio of the outcoming flux at x by the 

incoming flux (intensity of the source). In a mathematical formulation, 𝑇𝑓(𝑥) may be understood as the 

probability, for a particle of the source incident at x, to pass through the obstacle, which means to be 

seen by the sensor.  
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The addition of two images f and g corresponds to the superposition of the obstacles (objects) generating 

respectively f and g. The resulting image will be noted 𝑓 𝑔. Such an addition is deducted from the 

transmittance law: 

           𝑇
𝑓  𝑔

= 𝑇𝑓 . 𝑇𝑔         (1) 

This formula means that the probability, for a particle emitted by the source, to pass through the “sum” 

of the obstacles f and g, equals the product of the probabilities to pass through f and g, respectively. The 

link between the transmittance 𝑇𝑓(𝑥) and the grey level f(x) is given by ([3]):  

          𝑇𝑓(𝑥) = 1 −
𝑓(𝑥)

𝑀
       (2) 

Replacing in formula (1) the transmittances by their values obtained in (2) yields: 

             𝑓  𝑔 = 𝑓 + 𝑔 −
𝑓.𝑔

𝑀
      (3) 

From this addition law, it is possible ([1], [3]) to derive the multiplication of an image by a real number 

λ according to:  

           𝜆 𝑓 = 𝑀 − 𝑀(1 −
𝑓

𝑀
)𝜆  (4) 

Remark 1: such laws satisfy strong mathematical properties. In fact, if 𝐼(𝐷, [0, 𝑀[ ) and 𝐹(𝐷, ] − ∞, 𝑀[) 

design respectively the set of images defined on D with values in [0,M[, and the set of functions defined 

on D with values in ] − ∞, 𝑀[, we have ([3]): 

(𝐹(𝐷, ] − ∞, 𝑀[), , )  is a real vector space and (𝐼(𝐷, [0, 𝑀[), , ) is its positive cone. 

Remark 2: if 𝑓(𝑥, 𝑦) ≥ 𝑔(𝑥, 𝑦)   ∀(𝑥, 𝑦) ∈ 𝐷, it is possible to define the subtraction 𝑓  𝑔 according to: 

𝑓  𝑔 =  
𝑓 −  𝑔

1 −  
𝑔
𝑀

 

II- Logarithmic Additive Contrast for grey level and colour images 

1- For grey level images 

In the LIP framework, Jourlin et al. ([5]) introduced the Logarithmic Additive Contrast 𝐿𝐴𝐶𝑓(𝑥, 𝑦) of a 

grey level function f at a pair (x,y) of points lying in D²  according to the formula : 

𝑀𝑖𝑛(𝑓(𝑥), 𝑓(𝑦)) (𝐿𝐴𝐶𝑓(𝑥, 𝑦))  =  𝑀𝑎𝑥(𝑓(𝑥), 𝑓(𝑦)) (5) 

“Optical” interpretation: Such a contrast represents the grey level which must be added (superposed) to 

the brightest point (smallest grey level) in order to obtain the darkest one (highest grey level), which 

implies that this logarithmic contrast may be visualized without normalization. 

Using the addition formula (3) yields:  

𝐿𝐴𝐶𝑓(𝑥, 𝑦)   =  
|𝑓(𝑥)−𝑓(𝑦)|

1−𝑀𝑖𝑛(𝑓(𝑥),𝑓(𝑦))/𝑀
 (6) 

2- Extension of LAC to colour images and associated metrics 

Considering two colours C1 = (R1, G1, B1) and C2 = (R2, G2, B2) in the RGB-space, we propose to 

introduce the Logarithmic Additive Contrast in each channel. For example in the red channel, 

𝐿𝐴𝐶𝑅(𝐶1, 𝐶2), or 𝐿𝐴𝐶𝑅 when no confusion is possible, is defined according to:  
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𝐿𝐴𝐶𝑅(𝐶1, 𝐶2)  =  𝑀𝑎𝑥(𝑅1, 𝑅2) 𝑀𝑖𝑛(𝑅1, 𝑅2)   =  
| 𝑅1 −  𝑅2 | 

1 − 𝑀𝑖𝑛(𝑅1, 𝑅2)/𝑀
 

 From the three contrasts 𝐿𝐴𝐶𝑅, 𝐿𝐴𝐶𝐺  and 𝐿𝐴𝐶𝐵, we can deduct various metrics, for example: 

 𝑑1 =
1

√3
. √𝐿𝐴𝐶𝑅² + 𝐿𝐴𝐶𝐺² + 𝐿𝐴𝐶𝐵²           and         𝑑2 =

1

3
(𝐿𝐴𝐶𝑅 𝐿𝐴𝐶𝐺 𝐿𝐴𝐶𝐵)              

Another approach (cf. Fig. 1) consists of using a “probing” technique, as proposed by Asplünd ([6], [7]) 

to evaluate the distance between two binary shapes A and B according to: 

  𝑑𝐴𝑠(𝐴, 𝐵)  =  ln ( 
𝜆

𝜇
 )  where   𝜆 =  𝐼𝑛𝑓 { 𝜆, 𝐴 ⊆ 𝜆𝐵}  and 𝜇 =  𝑆𝑢𝑝 { 𝜇, 𝜇𝐵 ⊆ 𝐴 } 

The main property of such a distance is its independence to the magnifignations of A and B. 

This metric has been extended to grey level functions (cf. Fig. 2), using a “Double Sided Probing” 

approach ([8], [9]): 

    

Figure 1- Asplünd’s distance for binary shape             Figure 2- Asplünd’s distance between two grey level functions 

What we propose now is a similar approach to compute the “Asplünd’s distance” 𝑑𝐴𝑠(𝐶1, 𝐶2) between 

two colours C1 = (R1, G1, B1) and C2 = (R2, G2, B2) 

 𝑑𝐴𝑠(𝐶1, 𝐶2) = ln ( 
𝜆

𝜇
 ) where    𝜆 =  𝐼𝑛𝑓 { 𝜆, 𝜆 𝑅1 ≥  𝑅2, 𝜆 𝐺1 ≥  𝐺2, 𝜆 𝐵1 ≥  𝐵2 } 

     and 𝜇 =  𝑆𝑢𝑝 { 𝜇, 𝜇 𝑅1 ≤  𝑅2, 𝜇 𝐺1 ≤  𝐺2, 𝜇 𝐵1 ≤  𝐵2 } 

Fundamental remark: the main interest of these colour metrics arise from the consistency of the LIP 

framework with Human Vision. This point let expect a link between the shapes of colour neighbourhoods 

computed for each metric in the (x,y)-space and the elliptic shapes obtained by Mac Adam ([10]). This 

is the object of the next section. 

III- Logarithmic Metrics and associated neighbourhoods in (x,y) space 

The Mac Adam experiment consisted of defining colours neighbourhoods for the human visual system. 

A neighbourhood of a colour C groups all the colours which are confused with C by an average person. 

For this purpose, Mac Adam asked people to identify all the colours looking like C. Then he represented 

the neighbourhood of each colour from a set of about 100, which appeared to be ellipses. 

The consistency of the LIP framework with the human visual system is not formally established for 

colour images. That's why we decided to display the neighbourhoods associated to ours metrics in the 

(x,y) space, hoping some similarity with Mac-Adam ellipses. The difficulty is that we can’t create 

constant luminosity colours as the Mac Adam ones because of our RGB representation. 
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Figure 2- Euclidian colour neighbourhoods, d1- colour neighbourhoods  and MacAdam neighbourhoods 

The neighbourhoods are limited to RGB colours as our metrics are based on the LIP model. Euclidian 

metric leads to circular shaped neighbourhoods, with a little distortion in the monochromatic parts of 

the diagram (Fig. 2, on the left). However, LIP-based neighbourhoods are elliptically shaped with a small 

size in the blue part and a larger one in the red and green ones (Fig. 2, middle) as in the Mac Adam 

experiment (Fig. 2, on the right).  

Conclusion and perspectives 

In the present paper, we proved the ability of Logarithmic contrasts to generate Colour Metrics. Such 

Colour Metrics take into account the human eye sensitivity. A first step has been established in link with 

Mac-Adam ellipses. This point will be studied in depth in a near future, as well as the observed 

insensitivity of logarithmic concepts (contrasts, metrics) to lighting variations and/or lighting drift. 
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