Going from 3D Common-envelope Simulations to Fast 1D Simulations
Universität Heidelberg, Department of Physics and Astronomy, Heidelberg, Germany
email : vincent.bronner@h-its.org
Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Heidelberg, Germany
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Heidelberg, Germany
Abstract
One-dimensional (1D) methods for simulating the common-envelope (CE) phase offer advantages over three-dimensional (3D) simulations regarding their computational speed and feasibility. We present the 1D CE method from Bronner et al. (2024, DOI: 10.1051/0004-6361/202347397), including the results of the CE simulations of an asymptotic giant branch star donor. We further test this method in the massive star regime by computing the CE event of a red supergiant with a neutron-star mass and a black-hole mass companion. The 1D model can reproduce the orbital evolution and the envelope ejection from 3D simulations when choosing suitable values for the free parameters in the model. The best-fitting values differ from the expectations based on the low mass simulations, indicating that the free parameters depend on the structure of the giant star. The released recombination energy from hydrogen and helium helps to expand the envelope, similar to the low-mass CE simulations.
This work is distributed under the Creative Commons CC BY 4.0 Licence.
Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.
Bibliographie
Belczynski, K., Kalogera, V., and Bulik, T. (2002) A comprehensive study of binary compact objects as gravitational wave sources: Evolutionary channels, rates, and physical properties. ApJ, 572(1), 407–431. https://doi.org/10.1086/340304.
Blagorodnova, N., Klencki, J., Pejcha, O., Vreeswijk, P. M., Bond, H. E., Burdge, K. B., De, K., Fremling, C., Gehrz, R. D., Jencson, J. E., Kasliwal, M. M., Kupfer, T., Lau, R. M., Masci, F. J., and Rich, M. R. (2021) The luminous red nova AT 2018bwo in NGC 45 and its binary yellow supergiant progenitor. A&A, 653, A134. https://doi.org/10.1051/0004-6361/202140525.
Bondi, H. and Hoyle, F. (1944) On the mechanism of accretion by stars. MNRAS, 104(5), 273. https://doi.org/10.1093/mnras/104.5.273.
Bronner, V. A., Schneider, F. R. N., Podsiadlowski, Ph., and Röpke, F. K. (2024) Going from 3D to 1D: A 1D approach to common-envelope evolution. A&A, 683, A65. https://doi.org/10.1051/0004-6361/202347397.
Clayton, M., Podsiadlowski, Ph., Ivanova, N., and Justham, S. (2017) Episodic mass ejections from common-envelope objects. MNRAS, 470(2), 1788–1808. https://doi.org/10.1093/mnras/stx1290.
Fragos, T., Andrews, J. J., Ramirez-Ruiz, E., Meynet, G., Kalogera, V., Taam, R. E., and Zezas, A. (2019) The complete evolution of a neutron-star binary through a common envelope phase using 1D hydrodynamic simulations. ApJ, 883(2), L45. https://doi.org/10.3847/2041-8213/ab40d1.
Hirai, R. and Mandel, I. (2022) A two-stage formalism for common-envelope phases of massive stars. ApJL, 937(2), L42. https://doi.org/10.3847/2041-8213/ac9519.
Hoyle, F. and Lyttleton, R. A. (1941) On the accretion theory of stellar evolution. MNRAS, 101(4), 227–236. https://doi.org/10.1093/mnras/101.4.227.
John, J. A. and Draper, N. R. (1980) An alternative family of transformations. Journal of the Royal Statistical Society: Series C (Applied Statistics), 29(2), 190–197. https://doi.org/10.2307/2986305.
Kim, H. and Kim, W.-T. (2007) Dynamical friction of a circular-orbit perturber in a gaseous medium. ApJ, 665(1), 432–444. https://doi.org/10.1086/519302.
Kim, W.-T. (2010) Nonlinear dynamical friction of a circular-orbit perturber in a gaseous medium. ApJ, 725(1), 1069–1081. https://doi.org/10.1088/0004-637X/725/1/1069.
Lau, M. Y. M., Hirai, R., González-Bolívar, M., Price, D. J., De Marco, O., and Mandel, I. (2022) Common envelopes in massive stars: towards the role of radiation pressure and recombination energy in ejecting red supergiant envelopes. MNRAS, 512(4), 5462–5480. https://doi.org/10.1093/mnras/stac049.
Mandel, I. and Broekgaarden, F. S. (2022) Rates of compact object coalescences. LRR, 25, 1. https://doi.org/10.1007/s41114-021-00034-3.
Meyer, F. and Meyer-Hofmeister, E. (1979) Formation of cataclysmic binaries through common envelope evolution. A&A, 78, 167–176. https://ui.adsabs.harvard.edu/abs/1979A&A....78..167M.
Moreno, M. M., Schneider, F. R. N., Röpke, F. K., Ohlmann, S. T., Pakmor, R., Podsiadlowski, Ph., and Sand, C. (2022) From 3D hydrodynamic simulations of common-envelope interaction to gravitational-wave mergers. A&A, 667, A72. https://doi.org/10.1051/0004-6361/202142731.
Ohlmann, S. T., Röpke, F. K., Pakmor, R., and Springel, V. (2016) Hydrodynamic moving-mesh simulations of the common envelope phase in binary stellar systems. ApJ, 816(1), L9. https://doi.org/10.3847/2041-8205/816/1/L9.
Passy, J.-C., De Marco, O., Fryer, C. L., Herwig, F., Diehl, S., Oishi, J. S., Mac Low, M.-M., Bryan, G. L., and Rockefeller, G. (2012) Simulating the common envelope phase of a red giant using smoothed-particle hydrodynamics and uniform-grid codes. ApJ, 744(1), 52. https://doi.org/10.1088/0004-637X/744/1/52.
Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., and Timmes, F. (2011) Modules for Experiments in Stellar Astrophysics (MESA). ApJS, 192(1), 3. https://doi.org/10.1088/0067-0049/192/1/3.
Paxton, B., Cantiello, M., Arras, P., Bildsten, L., Brown, E. F., Dotter, A., Mankovich, C., Montgomery, M. H., Stello, D., Timmes, F. X., and Townsend, R. (2013) Modules for Experiments in Stellar Astrophysics (MESA): Planets, oscillations, rotation, and massive stars. ApJS, 208(1), 4. https://doi.org/10.1088/0067-0049/208/1/4.
Paxton, B., Marchant, P., Schwab, J., Bauer, E. B., Bildsten, L., Cantiello, M., Dessart, L., Farmer, R., Hu, H., Langer, N., Townsend, R. H. D., Townsley, D. M., and Timmes, F. X. (2015) Modules for Experiments in Stellar Astrophysics (MESA): Binaries, pulsations, and explosions. ApJS, 220(1), 15. https://doi.org/10.1088/0067-0049/220/1/15.
Paxton, B., Schwab, J., Bauer, E. B., Bildsten, L., Blinnikov, S., Duffell, P., Farmer, R., Goldberg, J. A., Marchant, P., Sorokina, E., Thoul, A., Townsend, R. H. D., and Timmes, F. X. (2018) Modules for Experiments in Stellar Astrophysics (MESA): Convective boundaries, element diffusion, and massive star explosions. ApJS, 234(2), 34. https://doi.org/10.3847/1538-4365/aaa5a8.
Paxton, B., Smolec, R., Schwab, J., Gautschy, A., Bildsten, L., Cantiello, M., Dotter, A., Farmer, R., Goldberg, J. A., Jermyn, A. S., Kanbur, S. M., Marchant, P., Thoul, A., Townsend, R. H. D., Wolf, W. M., Zhang, M., and Timmes, F. X. (2019) Modules for Experiments in Stellar Astrophysics (MESA): Pulsating variable stars, rotation, convective boundaries, and energy conservation. ApJS, 243(1), 10. https://doi.org/10.3847/1538-4365/ab2241.
Podsiadlowski, Ph. (2001) Common-envelope evolution and stellar mergers. In Evolution of Binary and Multiple Star Systems, edited by Podsiadlowski, Ph., Rappaport, S., King, A. R., D’Antona, F., and Burderi, L., Astronomical Society of the Pacific Conference Series, volume 229–249, page 239. http://www.aspbooks.org/a/volumes/article_details/?paper_id=21815.
Renzo, M., Zapartas, E., Justham, S., Breivik, K., Lau, M., Farmer, R., Cantiello, M., and Metzger, B. D. (2023) Rejuvenated accretors have less bound envelopes: Impact of Roche lobe overflow on subsequent common envelope events. ApJ, 942(2), L32. https://doi.org/10.3847/2041-8213/aca4d3.
Ricker, P. M. and Taam, R. E. (2008) The interaction of stellar objects within a common envelope. ApJ, 672(1), L41–L44. https://doi.org/10.1086/526343.
Röpke, F. K. and De Marco, O. (2023) Simulations of common-envelope evolution in binary stellar systems: physical models and numerical techniques. Living Reviews in Computational Astrophysics, 9, 2. https://doi.org/10.1007/s41115-023-00017-x.
Sand, C., Ohlmann, S. T., Schneider, F. R. N., Pakmor, R., and Röpke, F. K. (2020) Common-envelope evolution with an asymptotic giant branch star. A&A, 644, A60. https://doi.org/10.1051/0004-6361/202038992.
Szölgyén, Á., MacLeod, M., and Loeb, A. (2022) Eccentricity evolution in gaseous dynamical friction. MNRAS, 513(4), 5465–5473. https://doi.org/10.1093/mnras/stac1294.
Tauris, T. M., Kramer, M., Freire, P. C. C., Wex, N., Janka, H.-T., Langer, N., Podsiadlowski, Ph., Bozzo, E., Chaty, S., Kruckow, M. U., Heuvel, E. P. J. v. d., Antoniadis, J., Breton, R. P., and Champion, D. J. (2017) Formation of double neutron star systems. ApJ, 846(2), 170. https://doi.org/10.3847/1538-4357/aa7e89.
Tutukov, A. V. and YungelSon, L. R. (1993) The merger rate of neutron star and black hole binaries. MNRAS, 260(3), 675–678. https://doi.org/10.1093/mnras/260.3.675.
Vetter, M., Röpke, F. K., Schneider, F. R. N., Pakmor, R., Ohlmann, S. T., Lau, M. Y. M., and Andrassy, R. (2024) From spherical stars to disk-like structures: 3D common-envelope evolution of massive binaries beyond inspiral. A&A, 691, A244. https://doi.org/10.1051/0004-6361/202451579.
Vigna-Gómez, A., Neijssel, C. J., Stevenson, S., Barrett, J. W., Belczynski, K., Justham, S., de Mink, S. E., Müller, B., Podsiadlowski, Ph., Renzo, M., Szécsi, D., and Mandel, I. (2018) On the formation history of Galactic double neutron stars. MNRAS, 481(3), 4009–4029. https://doi.org/10.1093/mnras/sty2463.