Surjectivity of constant coefficient partial differential operators on (4) and Whitney's C4-cone
W. Rüdiger Braun,
MATHEMATISCHES INSTITUT, HEINRICH-HEINE-UNIVERSITÄT, UNIVERSITÄTSSTRASSE 1.
Reinhold Meise,
40225 DÜSSELDORF, GERMANY
Abstract
Constant coefficient partial differential operators on the space of all real analytic functions in four variables are considered. The variety of their symbol is decomposed using methods of algorithmic algebraic geometry. This decomposition is needed for the application of a geometric characterization, given recently by the present authors, of those operators whose symbol satisfies Hörmander’s Phragmén-Lindelöf condition, which, by earlier work of Hörmander, is equivalent to the surjectivity of the differential operator on the space of real analytic functions.
12000 Mathematics Subject Classification : primary 35E10, secondary 14Q10
Pour citer cet article
W. Rüdiger Braun, Reinhold Meise & B.A. Taylor, «Surjectivity of constant coefficient partial differential operators on (4) and Whitney's C4-cone», Bulletin de la Société Royale des Sciences de Liège [En ligne], Volume 70 - Année 2001, Numéro 4 - 5 - 6, 195 – 206 URL : https://popups.uliege.be/0037-9565/index.php?id=1847.