- Accueil
- Volume 93 - Année 2024
- No 3 - 41st Liège International Astrophysical Coll...
- An Interaction and Merger in a Massive Multiple System Create a Magnetic Field in a Massive Star
Visualisation(s): 36 (1 ULiège)
Téléchargement(s): 0 (0 ULiège)
An Interaction and Merger in a Massive Multiple System Create a Magnetic Field in a Massive Star
Document(s) associé(s)
Version PDF originaleRésumé
Dans un système binaire où les étoiles sont liées gravitationnellement, celles-ci peuvent interagir entre elles, entraînant un transfert de masse et de moment angulaire. De telles interactions ont un impact dramatique sur la vie des étoiles impliquées. En effet, ces interactions peuvent modifier leur masse finale, leurs vitesses de rotation ainsi que les processus de mélange à l’intérieur des étoiles mêmes. Ici, nous présentant les résultats nos travaux qui apportent, selon nous, la preuve qu’une interaction dans un système triple a provoqué la coalescence de la binaire centrale, résultant en une étoile magnétique. Cela a créé le système tel qu’il est vu aujourd’hui – un système binaire massif entouré d’une nébuleuse d’éjections enrichie où une seule des étoiles massives est magnétique.
Abstract
When stars are gravitationally bound in a binary or higher order multiple system there is a chance they can interact, enabling mass and momentum transfer. Such interactions can be life-changing events for the stars involved as they can change their internal mixing, final mass and rotational speeds. In these proceedings, we describe our recent work which provides evidence that an interaction in a previous triple system caused a merger, the product of which is a magnetic star. This created the system as it is seen today – a massive binary system surrounded by an enriched ejecta nebula where only one of the massive stars is magnetic.
This work is distributed under the Creative Commons CC BY 4.0 Licence.
Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.
Bibliographie
[1] Wade, G. A., Neiner, C., Alecian, E., Grunhut, J. H., Petit, V., Batz, B. d., Bohlender, D. A., Cohen, D. H., Henrichs, H. F., Kochukhov, O., Landstreet, J. D., Manset, N., Martins, F., Mathis, S., Oksala, M. E., Owocki, S. P., Rivinius, T., Shultz, M. E., Sundqvist, J. O., Townsend, R. H. D., ud Doula, A., Bouret, J.-C., Braithwaite, J., Briquet, M., Carciofi, A. C., David-Uraz, A., Folsom, C. P., Fullerton, A. W., Leroy, B., Marcolino, W. L. F., Moffat, A. F. J., Nazé, Y., Louis, N. S., Aurière, M., Bagnulo, S., Bailey, J. D., Barbá, R. H., Blazère, A., Böhm, T., Catala, C., Donati, J.-F., Ferrario, L., Harrington, D., Howarth, I. D., Ignace, R., Kaper, L., Lüftinger, T., Prinja, R., Vink, J. S., Weiss, W. W., and Yakunin, I. (2016) The MiMeS survey of magnetism in massive stars: introduction and overview. MNRAS, 456(1), 2–22. https://doi.org/10.1093/mnras/stv2568.
[2] Grunhut, J. H., Wade, G. A., Neiner, C., Oksala, M. E., Petit, V., Alecian, E., Bohlender, D. A., Bouret, J.-C., Henrichs, H. F., Hussain, G. A. J., Kochukhov, O., and the MiMeS Collaboration (2016) The MiMeS survey of Magnetism in Massive Stars: magnetic analysis of the O-type stars. MNRAS, 465(2), 2432–2470. https://doi.org/10.1093/mnras/stw2743.
[3] Obergaulinger, M., Janka, H.-T., and Aloy, M. A. (2014) Magnetic field amplification and magnetically supported explosions of collapsing, non-rotating stellar cores. MNRAS, 445(3), 3169–3199. https://doi.org/10.1093/mnras/stu1969.
[4] Petit, V., Keszthelyi, Z., MacInnis, R., Cohen, D. H., Townsend, R. H. D., Wade, G. A., Thomas, S. L., Owocki, S. P., Puls, J., and ud Doula, A. (2017) Magnetic massive stars as progenitors of ‘heavy’ stellar-mass black holes. MNRAS, 466(1), 1052–1060. https://doi.org/10.1093/mnras/stw3126.
[5] Bucciantini, N., Quataert, E., Metzger, B. D., Thompson, T. A., Arons, J., and Del Zanna, L. (2009) Magnetized relativistic jets and long-duration GRBs from magnetar spin-down during core-collapse supernovae. MNRAS, 396(4), 2038–2050. https://doi.org/10.1111/j.1365-2966.2009.14940.x.
[6] Kasen, D. and Bildsten, L. (2010) Supernova light curves powered by young magnetars. ApJ, 717(1), 245–249. https://doi.org/10.1088/0004-637X/717/1/245.
[7] Braithwaite, J. and Spruit, H. C. (2004) A fossil origin for the magnetic field in A stars and white dwarfs. Natur, 431, 819–821. https://doi.org/10.1038/nature02934.
[8] Arlt, R. and Rüdiger, G. (2011) Amplification and stability of magnetic fields and dynamo effect in young Astars: Stability of magnetic fields in young A stars. MNRAS, 412(1), 107–119. https://doi.org/10.1111/j.1365-2966.2010.17889.x.
[9] Moss, D. (2003) The survival of fossil magnetic fields during pre-main sequence evolution. A&A, 403(2), 693–697. https://doi.org/10.1051/0004-6361:20030431.
[10] Ferrario, L., Pringle, J. E., Tout, C. A., and Wickramasinghe, D. T. (2009) The origin of magnetism on the upper main sequence. MNRAS, 400(1), L71–L74. https://doi.org/10.1111/j.1745-3933.2009.00765.x.
[11] Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., and Timmes, F. (2011) Modules for Experiments in Stellar Astrophysics (MESA). ApJS, 192(1), 3. https://doi.org/10.1088/0067-0049/192/1/3.
[12] Schneider, F. R. N., Ohlmann, S. T., Podsiadlowski, Ph., Röpke, F. K., Balbus, S. A., Pakmor, R., and Springel, V. (2019) Stellar mergers as the origin of magnetic massive stars. Natur, 574, 211–214. https://doi.org/10.1038/s41586-019-1621-5.
[13] Schneider, F. R. N., Podsiadlowski, Ph., Langer, N., Castro, N., and Fossati, L. (2016) Rejuvenation of stellar mergers and the origin of magnetic fields in massive stars. MNRAS, 457(3), 2355–2365. https://doi.org/10.1093/mnras/stw148.
[14] Frost, A. J., Sana, H., Mahy, L., Wade, G., Barron, J., Le Bouquin, J.-B., Mérand, A., Schneider, F. R. N., Shenar, T., Barbá, R. H., Bowman, D. M., Fabry, M., Farhang, A., Marchant, P., Morrell, N. I., and Smoker, J. V. (2024) A magnetic massive star has experienced a stellar merger. Sci, 384, 214–217. https://doi.org/10.1126/science.adg7700.
[15] Walborn, N. R. (1972) Spectral classification of OB stars in both hemispheres and the absolute magnitude calibration. AJ, 77, 312–318. https://doi.org/10.1086/111285.
[16] Nazé, Y., Walborn, N. R., Rauw, G., Martins, F., Pollock, A. M. T., and Bond, H. E. (2008) HD 148937: A multiwavelength study of the third Galactic member of the Of?p class. AJ, 135(5), 1946–1957. https://doi.org/10.1088/0004-6256/135/5/1946.
[17] Nazé, Y., ud Doula, A., Spano, M., Rauw, G., De Becker, M., and Walborn, N. R. (2010) New findings on the prototypical Of?p stars. A&A, 520, A59. https://doi.org/10.1051/0004-6361/201014333.
[18] Wade, G. A., Grunhut, J., Gräfener, G., Howarth, I. D., Martins, F., Petit, V., Vink, J. S., Bagnulo, S., Folsom, C. P., Nazé, Y., Walborn, N. R., Townsend, R. H. D., and Evans, C. J. (2012) The spectral variability and magnetic field characteristics of the Of?p star HD 148937. MNRAS, 419(3), 2459–2471. https://doi.org/10.1111/j.1365-2966.2011.19897.x.
[19] Hubrig, S., Schöller, M., Schnerr, R. S., González, J. F., Ignace, R., and Henrichs, H. F. (2008) Magnetic field measurements of O stars with FORS 1 at the VLT. A&A, 490(2), 793–800. https://doi.org/10.1051/0004-6361:200810171.
[20] Sana, H., Le Bouquin, J.-B., Lacour, S., Berger, J.-P., Duvert, G., Gauchet, L., Norris, B., Olofsson, J., Pickel, D., Zins, G., Absil, O., de Koter, A., Kratter, K., Schnurr, O., and Zinnecker, H. (2014) Southern massive stars at high angular resolution: Observational campaign and companion detection. ApJS, 215(1), 15. https://doi.org/10.1088/0067-0049/215/1/15.
[21] Le Bouquin, J.-B., Berger, J.-P., Lazareff, B., Zins, G., Haguenauer, P., Jocou, L., Kern, P., Millan-Gabet, R., Traub, W., Absil, O., Augereau, J.-C., Benisty, M., Blind, N., Bonfils, X., Bourget, P., Delboulbe, A., Feautrier, P., Germain, M., Gitton, P., Gillier, D., Kiekebusch, M., Kluska, J., Knudstrup, J., Labeye, P., Lizon, J.-L., Monin, J.-L., Magnard, Y., Malbet, F., Maurel, D., Ménard, F., Micallef, M., Michaud, L., Montagnier, G., Morel, S., Moulin, T., Perraut, K., Popovic, D., Rabou, P., Rochat, S., Rojas, C., Roussel, F., Roux, A., Stadler, E., Stefl, S., Tatulli, E., and Ventura, N. (2011) PIONIER: a 4-telescope visitor instrument at VLTI. A&A, 535, A67. https://doi.org/10.1051/0004-6361/201117586.
[22] Wade, G. A., Smoker, J. V., Evans, C. J., Howarth, I. D., Barba, R., Cox, N. L. J., Morrell, N., Nazé, Y., Cami, J., Farhang, A., Walborn, N. R., Arias, J., and Gamen, R. (2019) A remarkable change of the spectrum of the magnetic Of?p star HD 148937 reveals evidence of an eccentric, high-mass binary. MNRAS, 483(2), 2581–2591. https://doi.org/10.1093/mnras/sty3304.
[23] GRAVITY Collaboration: Abuter, R., Accardo, M., Amorim, A., Anugu, N., Ávila, G., Azouaoui, N., Benisty, M., Berger, J. P., Blind, N., Bonnet, H., and 123 more (2017) First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope ınterferometer. A&A, 602, A94. https://doi.org/10.1051/0004-6361/201730838.
[24] Deshmukh, K., Sana, H., Mérand, A., Bodensteiner, J., Bordier, E., Dsilva, K., Frost, A. J., Gosset, E., Langer, N., Bouquin, J.-B. L., Lefever, R. R., Mahy, L., Patrick, L. R., Reggiani, M., Sander, A. A. C., Shenar, T., Tramper, F., Villaseñor, J. I., and Waisberg, I. (2024). Investigating 39 Galactic Wolf–Rayet stars with VLTI/GRAVITY: Uncovering a long period binary desert. arXiv e-prints: arXiv:2409.15212. https://doi.org/10.48550/arXiv.2409.15212.
[25] Haubois, X., Mérand, A., Abuter, R., Araneda, J. P., Bian, F., Bourget, P., Bristow, P., Burgos, P., Delplancke-Ströbele, F., Dembet, R., Gil, J. P., Glindemann, A., Gonté, F., Guajardo, P., Hubin, N., Hummel, C., Korhonen, H. H., Labdon, A., Kolb, J., Kosmalski, J., Lacour, S., Paladini, C., Pallanca, L., Pasquini, L., Percheron, I., Riquelme, M., Rivinius, T., Sani, E., Schmidtobreick, L., Scicluna, P., Schoeller, M., Schuhler, N., Tristram, K. R. W., Wittkowski, M., Woillez, J., and Zins, G. (2022) VLTI status update. In Optical and Infrared Interferometry and Imaging VIII, edited by Mérand, A., Sallum, S., and Sanchez-Bermudez, J., SPIE Conference Series, volume 12183. SPIE. https://doi.org/10.1117/12.2635405.
[26] Mérand, A. (2022) Flexible spectro–interferometric modeling of OIFITS data with PMOIRED. In Optical and Infrared Interferometry and Imaging VIII, edited by Mérand, A., Sallum, S., and Sanchez-Bermudez, J., SPIE Conference Series, volume 12183. SPIE. https://doi.org/10.1117/12.2626700.
[27] Ud-Doula, A., Owocki, S. P., and Townsend, R. H. D. (2008) Dynamical simulations of magnetically channelled line–driven stellar winds – II. The effects of field-aligned rotation. MNRAS, 385(1), 97–108. https://doi.org/10.1111/j.1365-2966.2008.12840.x.
[28] Oksala, M. E., Grunhut, J. H., Kraus, M., Borges Fernandes, M., Neiner, C., Condori, C. A. H., Campagnolo, J. C. N., and Souza, T. B. (2015) An infrared diagnostic for magnetism in hot stars. A&A, 578, A112. https://doi.org/10.1051/0004-6361/201525987.
[29] Wisniewski, J. P., Chojnowski, S. D., Davenport, J. R. A., Bartz, J., Pepper, J., Whelan, D. G., Eikenberry, S. S., Lomax, J. R., Majewski, S. R., Richardson, N. D., and Skrutskie, M. (2015) Characterizing the rigidly rotating magnetosphere stars HD 345439 and HD 23478. ApJL, 811(2), L26. https://doi.org/10.1088/2041-8205/811/2/L26.
[30] Chojnowski, S. D., Hubrig, S., Labadie-Bartz, J., Rivinius, T., Schöller, M., Niemczura, E., Nidever, D. L., Stutz, A. M., and Hummel, C. A. (2022) Trumpler 16-26: a new centrifugal magnetosphere star discovered via SDSS/APOGEE H-band spectroscopy. MNRAS, 516(2), 2812–2823. https://doi.org/10.1093/mnras/stac2396.
[31] Fabry, M., Hawcroft, C., Frost, A. J., Mahy, L., Marchant, P., Le Bouquin, J.-B., and Sana, H. (2021) Resolving the dynamical mass tension of the massive binary 9 Sagittarii. A&A, 651, A119. https://doi.org/10.1051/0004-6361/202140452.
[32] Bodensteiner, J., Shenar, T., Mahy, L., Fabry, M., Marchant, P., Abdul-Masih, M., Banyard, G., Bowman, D. M., Dsilva, K., Frost, A. J., Hawcroft, C., Reggiani, M., and Sana, H. (2020) Is HR 6819 a triple system containing a black hole? An alternative explanation. A&A, 641, A43. https://doi.org/10.1051/0004-6361/202038682.
[33] Shenar, T., Bodensteiner, J., Abdul-Masih, M., Fabry, M., Mahy, L., Marchant, P., Banyard, G., Bowman, D. M., Dsilva, K., Hawcroft, C., Reggiani, M., and Sana, H. (2020) The “hidden” companion in LB-1 unveiled by spectral disentangling. A&A, 639, L6. https://doi.org/10.1051/0004-6361/202038275.
[34] Hadrava, P. (1995) Orbital elements of multiple spectroscopic stars. A&AS, 114, 393–396. https://ui.adsabs.harvard.edu/abs/1995A&AS..114..393H.
[35] Remillard, R. A. and McClintock, J. E. (2006) X-ray properties of black-hole binaries. ARA&A, 44, 49–92. https://doi.org/10.1146/annurev.astro.44.051905.092532.
[36] Marchenko, S. V., Moffat, A. F. J., and Eenens, P. R. J. (1998) The Wolf–Rayet binary WR 141 (WN5O + O5 V-III) revisited. PASP, 110(754), 1416–1422. https://doi.org/10.1086/316280.
[37] González, J. F. and Levato, H. (2006) Separation of composite spectra: the spectroscopic detection of an eclipsing binary star. A&A, 448(1), 283–292. https://doi.org/10.1051/0004-6361:20053177.
[38] Hillier, D. J. and Miller, D. L. (1998) The treatment of non-LTE line blanketing in spherically expanding outflows. ApJ, 496(1), 407–427. https://doi.org/10.1086/305350.
[39] Brott, I., de Mink, S. E., Cantiello, M., Langer, N., de Koter, A., Evans, C. J., Hunter, I., Trundle, C., and Vink, J. S. (2011) Rotating massive main-sequence stars: I. Grids of evolutionary models and isochrones. A&A, 530, A115. https://doi.org/10.1051/0004-6361/201016113.
[40] Schneider, F. R. N., Langer, N., de Koter, A., Brott, I., Izzard, R. G., and Lau, H. H. B. (2014) Bonnsai: a Bayesian tool for comparing stars with stellar evolution models. A&A, 570, A66. https://doi.org/10.1051/0004-6361/201424286.
[41] Linder, N., Rauw, G., Martins, F., Sana, H., De Becker, M., and Gosset, E. (2008) High-resolution optical spectroscopy of Plaskett’s star. A&A, 489(2), 713–723. https://doi.org/10.1051/0004-6361:200810003.
[42] Grunhut, J. H., Wade, G. A., Leutenegger, M., Petit, V., Rauw, G., Neiner, C., Martins, F., Cohen, D. H., Gagne, M., Ignace, R., Mathis, S., de Mink, S. E., Moffat, A. F. J., Owocki, S., Shultz, M., Sundqvist, J., and the MiMeS Collaboration (2013) Discovery of a magnetic field in the rapidly rotating O-type secondary of the colliding-wind binary HD 47129 (Plaskett’s star). MNRAS, 428(2), 1686–1695. https://doi.org/10.1093/mnras/sts153.
[43] Lim, B., Nazé, Y., Chang, S.-J., and Hutsemékers, D. (2024) A morphokinematic study of the enigmatic emission nebula NGC 6164/5 surrounding the magnetic O-type star HD 148937. ApJ, 961(1), 72. https://doi.org/10.3847/1538-4357/ad12c4.
[44] Mahy, L., Hutsemékers, D., Nazé, Y., Royer, P., Lebouteiller, V., and Waelkens, C. (2017) Evolutionary status of the Of?p star HD 148937 and of its surrounding nebula NGC 6164/5. A&A, 599, A61. https://doi.org/10.1051/0004-6361/201629585.
[45] Pastorello, A., Mason, E., Taubenberger, S., Fraser, M., Cortini, G., Tomasella, L., Botticella, M. T., Elias-Rosa, N., Kotak, R., Smartt, S. J., Benetti, S., Cappellaro, E., Turatto, M., Tartaglia, L., Djorgovski, S. G., Drake, A. J., Berton, M., Briganti, F., Brimacombe, J., Bufano, F., Cai, Y.-Z., Chen, S., Christensen, E. J., Ciabattari, F., Congiu, E., Dimai, A., Inserra, C., Kankare, E., Magill, L., Maguire, K., Martinelli, F., Morales-Garoffolo, A., Ochner, P., Pignata, G., Reguitti, A., Sollerman, J., Spiro, S., Terreran, G., and Wright, D. E. (2019) Luminous red novae: Stellar mergers or giant eruptions? A&A, 630, A75. https://doi.org/10.1051/0004-6361/201935999.
[46] MacLeod, M., Ostriker, E. C., and Stone, J. M. (2018) Bound outflows, unbound ejecta, and the shaping of bipolar remnants during stellar coalescence. ApJ, 868(2), 136. https://doi.org/10.3847/1538-4357/aae9eb.
[47] Hirai, R., Podsiadlowski, Ph., Owocki, S. P., Schneider, F. R. N., and Smith, N. (2021) Simulating the formation of η Carinae’s surrounding nebula through unstable triple evolution and stellar merger-induced eruption. MNRAS, 503(3), 4276–4296. https://doi.org/10.1093/mnras/stab571.
Pour citer cet article
A propos de : Abigail J. Frost
Institute of Astronomy, KU Leuven, 3001 Leuven, Belgium
email : abigail.frost@eso.org
A propos de : Hugues Sana
A propos de : Laurent Mahy
Institute of Astronomy, KU Leuven, 3001 Leuven, Belgium
A propos de : Gregg Wade
A propos de : James Barron
Department of Physics & Space Science, Royal Military College of Canada, Kingston Ontario K7K 0C6, Canada
A propos de : Jean-Baptiste Le Bouquin
A propos de : Antoine Mérand
A propos de : Fabian R. N. Schneider
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, 69120 Heidelberg, Germany
A propos de : Tomer Shenar
Institute of Astronomy, KU Leuven, 3001 Leuven, Belgium
A propos de : Rodolfo H. Barbá
A propos de : Dominic M. Bowman
Institute of Astronomy, KU Leuven, 3001 Leuven, Belgium
A propos de : Matthias Fabry
Institute of Astronomy, KU Leuven, 3001 Leuven, Belgium
A propos de : Amin Farhang
A propos de : Pablo Marchant
A propos de : Nidia I. Morrell
A propos de : Jonathan V. Smoker
UK Astronomy Technology Centre, Royal Observatory, Edinburgh EH9 3HJ, UK