- Home
- Volume 93 - Année 2024
- No 3 - 41st Liège International Astrophysical Coll...
- Interacting Winds and Giant Eruptions in Massive Binaries
View(s): 38 (1 ULiège)
Download(s): 0 (0 ULiège)
Interacting Winds and Giant Eruptions in Massive Binaries
Attached document(s)
original pdf fileAbstract
Massive stars eject strong winds that affect their evolution. When in a binary system, their winds collide and emit radiation across the spectrum, providing an opportunity to study the stars and the interaction between them. There are many physical effects involved in the colliding-wind problem, and its complexity requires 3D numerical simulations. When one of the star is accreting the simulations become more complex. We present simulations of colliding winds in massive binary systems that include a detailed treatment of wind ejection, orbital motion, clumpiness, and other effects. These simulations are applied to different kinds of massive binaries that include LBVs, WR-stars, B[e] Supergiants, and O stars, in various primary–secondary combinations. We present results of simulations from some of the systems we studied. We show systematic simulations that were used to determine the general conditions that may lead to accretion onto the secondary star, and obtain the new sub-Bondi–Hoyle–Lyttleton accretion, with relationships between the mass accretion rate and the ratio of the stellar wind momentum. We also present recent results showing how the accreting secondary star responds to very high accretion rates, such as in giant LBV eruptions, and show how jets can suppress the accretion rate in such systems.
This work is distributed under the Creative Commons CC BY 4.0 Licence.
Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.
Bibliographie
Abraham, Z., Falceta-Gonçalves, D., and Beaklini, P. P. B. (2014) η Carinae Baby Homunculus uncovered by ALMA. ApJ, 791(2), 95. https://doi.org/10.1088/0004-637X/791/2/95.
Akashi, M. S., Kashi, A., and Soker, N. (2013) Accretion of dense clumps in the periastron passage of η Carinae. NewA, 18, 23–30. https://doi.org/10.1016/j.newast.2012.05.010.
Allen, D. A. and Swings, J. P. (1976) The spectra of peculiar Be star with infrared excesses. A&A, 47(2), 293–302. https://ui.adsabs.harvard.edu/abs/1976A&A....47..293A.
Aret, A., Kraus, M., and Šlechta, M. (2016) Spectroscopic survey of emission-line stars – I. B[e] stars. MNRAS, 456(2), 1424–1437. https://doi.org/10.1093/mnras/stv2758.
Bear, E. and Soker, N. (2024) On the response of massive main sequence stars to mass accretion and outflow at high rates. arXiv e-prints: arXiv:2407.03182. https://doi.org/10.48550/arXiv.2407.03182.
Bestenlehner, J. M., Crowther, P. A., Broos, P. S., Pollock, A. M. T., and Townsley, L. K. (2022) Melnick 33Na: a very massive colliding-wind binary system in 30 Doradus. MNRAS, 510(4), 6133–6149. https://doi.org/10.1093/mnras/stab3521.
Brandi, E., Gosset, E., and Swings, J.-P. (1987) The ultraviolet spectrum of the peculiar emission-line star GG Carinae. A&A, 175(1-2), 151–163. https://ui.adsabs.harvard.edu/abs/1987A&A...175..151B.
Castor, J. I., Abbott, D. C., and Klein, R. I. (1975) Radiation-driven winds in Of stars. ApJ, 195(1), 157–174. https://doi.org/10.1086/153315.
Curé, M. and Araya, I. (2023) Radiation-driven wind hydrodynamics of massive stars: A review. Galaxies, 11(3), 68. https://doi.org/10.3390/galaxies11030068.
Damineli, A., Hillier, D. J., Corcoran, M. F., Stahl, O., Groh, J. H., Arias, J., Teodoro, M., Morrell, N., Gamen, R., Gonzalez, F., Leister, N. V., Levato, H., Levenhagen, R. S., Grosso, M., Colombo, J. F. A., and Wallerstein, G. (2008) A multispectral view of the periodic events in η Carinae. MNRAS, 386(4), 2330–2344. https://doi.org/10.1111/j.1365-2966.2008.13214.x.
Damineli, A., Kaufer, A., Wolf, B., Stahl, O., Lopes, D. F., and de Araújo, F. X. (2000) η Carinae: Binarity confirmed. ApJL, 528(2), L101–L104. https://doi.org/10.1086/312441.
Davidson, K. and Humphreys, R. M. (1997) Eta Carinae and its environment. ARA&A, 35, 1–32. https://doi.org/10.1146/annurev.astro.35.1.1.
Davidson, K. and Humphreys, R. M. (editors) (2012) Eta Carinae and the Supernova Impostors, Astrophysics and Space Science Library, volume 384. Springer, New York (US-NY). https://doi.org/10.1007/978-1-4614-2275-4.
Davidson, K., Ishibashi, K., and Martin, J. C. (2017) Concerning the orbit of η Car. RNAAS, 1(1), 6. https://doi.org/10.3847/2515-5172/aa96b3.
De Marco, O. and Izzard, R. G. (2017) Dawes Review 6: The impact of companions on stellar evolution. PASA, 34, e001. https://doi.org/10.1017/pasa.2016.52.
Eichler, D. and Usov, V. (1993) Particle acceleration and nonthermal radio emission in binaries of early-type stars. ApJ, 402(1), 271–279. https://doi.org/10.1086/172130.
Ekström, S. (2021) Massive star modelling and nucleosynthesis. Frontiers in Astronomy and Space Sciences, 8, 53. https://doi.org/10.3389/fspas.2021.617765.
Eldridge, J. J. (2017) Population synthesis of massive close binary evolution. In Handbook of Supernovae, edited by Alsabti, A. W. and Murdin, P., chapter 27, pages 671–692. Springer, Cham (CH). https://doi.org/10.1007/978-3-319-21846-5_125.
Eldridge, J. J., McClelland, L. A. S., Xiao, L., Stanway, E. R., and Bray, J. (2015) The importance of getting single-star and binary physics correct. In Wolf–Rayet Stars, edited by Hamann, W.-R., Sander, A., and Todt, H., pages 177–182. Potsdam University Press, Potsdam (DE). http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-84268.
Farrell, E., Groh, J. H., Meynet, G., and Eldridge, J. J. (2022) Numerical experiments to help understand cause and effect in massive star evolution. MNRAS, 512(3), 4116–4135. https://doi.org/10.1093/mnras/stac538.
Folini, D. and Walder, R. (2000) 3D hydrodynamical simulations of colliding wind binaries: Theory confronts observations. Ap&SS, 274(1-2), 189–194. https://doi.org/10.1023/A:1026560309386.
Folini, D. and Walder, R. (2002) Theoretical predictions for the cold part of the colliding-wind interaction-zone. In Interacting Winds from Massive Stars, edited by Moffat, A. F. J. and St-Louis, N., Astronomical Society of the Pacific Conference Series, volume 260, pages 605–614. https://ui.adsabs.harvard.edu/abs/2002ASPC..260..605F.
Garofali, K., Levesque, E. M., Massey, P., and Williams, B. F. (2019) The first candidate colliding-wind binary in M33. ApJ, 880(1), 8. https://doi.org/10.3847/1538-4357/ab286e.
Georgy, C., Hirschi, R., and Ekström, S. (2017) Massive star evolution: What we do (not) know. In Second BRITE-Constellation Science Conference: Small Satellites – Big Science, edited by Zwintz, K. and Poretti, E., Proceedings of the Polish Astronomical Society, volume 5, pages 37–44. https://www.pta.edu.pl/proc/v5p37.
Gomez, H. L., Vlahakis, C., Stretch, C. M., Dunne, L., Eales, S. A., Beelen, A., Gomez, E. L., and Edmunds, M. G. (2010) Submillimetre variability of Eta Carinae: cool dust within the outer ejecta. MNRAS, 401(1), L48–L52. https://doi.org/10.1111/j.1745-3933.2009.00784.x.
Gosset, E., Hutsemékers, D., Surdej, J., and Swings, J. P. (1985) Radial velocities along the light curve of the peculiar emission-line star GG Carinae. A&A, 153, 71–78. https://ui.adsabs.harvard.edu/abs/1985A&A...153...71G.
Grant, D., Blundell, K., Godden, E., Lee, S., and McCowage, C. (2023) Tracing the colliding winds of η Carinae in He I. MNRAS, 526(4), 6155–6167. https://doi.org/10.1093/mnras/stad3045.
Gull, T. R., Hartman, H., Corcoran, M. F., Damineli, A., Madura, T., Moffat, A. F. J., Richardson, N. D., and Weigelt, G. (2024) Eta Carinae left a curious ladder to climb. arXiv e-prints: arXiv:2403.13954. https://doi.org/10.48550/arXiv.2403.13954.
Hainich, R., Rühling, U., Todt, H., Oskinova, L. M., Liermann, A., Gräfener, G., Foellmi, C., Schnurr, O., and Hamann, W.-R. (2014) The Wolf–Rayet stars in the Large Magellanic Cloud: A comprehensive analysis of the WN class. A&A, 565, A27. https://doi.org/10.1051/0004-6361/201322696.
Hamaguchi, K., Corcoran, M. F., Gull, T., Ishibashi, K., Pittard, J. M., Hillier, D. J., Damineli, A., Davidson, K., Nielsen, K. E., and Kober, G. V. (2007) X-ray spectral variation of η Carinae through the 2003 X-ray minimum. ApJ, 663(1), 522–542. https://doi.org/10.1086/518101.
Heger, A., Langer, N., and Woosley, S. E. (2000) Presupernova evolution of rotating massive stars. I. Numerical method and evolution of the internal stellar structure. ApJ, 528(1), 368–396. https://doi.org/10.1086/308158.
Hillier, D. J., Davidson, K., Ishibashi, K., and Gull, T. (2001) Eta Carinae: The central star. In Eta Carinae and Other Mysterious Stars: The Hidden Opportunities of Emission Spectroscopy, edited by Gull, T. R., Johannson, S., and Davidson, K., Astronomical Society of the Pacific Conference Series, volume 242, pages 15–28. https://ui.adsabs.harvard.edu/abs/2001ASPC..242...15H.
Hillier, D. J., Koenigsberger, G., Nazé, Y., Morrell, N., Barbá, R. H., and Gamen, R. (2019) The enigmatic binary system HD 5980. MNRAS, 486(1), 725–742. https://doi.org/10.1093/mnras/stz808.
Hirai, R., Podsiadlowski, Ph., Owocki, S. P., Schneider, F. R. N., and Smith, N. (2021) Simulating the formation of η Carinae’s surrounding nebula through unstable triple evolution and stellar merger-induced eruption. MNRAS, 503(3), 4276–4296. https://doi.org/10.1093/mnras/stab571.
Humphreys, R. M., Davidson, K., and Smith, N. (1999) η Carinae’s second eruption and the light curves of the η Carinae variables. PASP, 111(763), 1124–1131. https://doi.org/10.1086/316420.
Humphreys, R. M., Gordon, M. S., Martin, J. C., Weis, K., and Hahn, D. (2017) Luminous and variable stars in M31 and M33. IV. Luminous Blue Variables, candidate LBVs, B[e] supergiants, and the warm hypergiants: How to tell them apart. ApJ, 836(1), 64. https://doi.org/10.3847/1538-4357/aa582e.
Ishibashi, K., Gull, T. R., Davidson, K., Smith, N., Lanz, T., Lindler, D., Feggans, K., Verner, E., Woodgate, B. E., Kimble, R. A., Bowers, C. W., Kraemer, S., Heap, S. R., Danks, A. C., Maran, S. P., Joseph, C. L., Kaiser, M. E., Linsky, J. L., Roesler, F., and Weistrop, D. (2003) Discovery of a Little Homunculus within the Homunculus Nebula of Carinae. AJ, 125(6), 3222–3236. https://doi.org/10.1086/375306.
Ishii, T., Matsuda, T., Shima, E., Livio, M., Anzer, U., and Boerner, G. (1993) Numerical simulations of two-dimensional and three-dimensional wind accretion flows of an isothermal gas. ApJ, 404, 706. https://doi.org/10.1086/172324.
Kashi, A. (2010) Luminous Blue Variable eruptions triggered and powered by binary interaction. In International Conferenceon Binaries: ın Celebration of Ron Webbink’s 65th Birthday, edited by Kalogera, V. and van der Sluys, M., AIP Conference Proceedings, volume 1314, pages 55–56. AIP Publishing. https://doi.org/10.1063/1.3536411.
Kashi, A. (2017) Accretion at the periastron passage of Eta Carinae. MNRAS, 464(1), 775–782. https://doi.org/10.1093/mnras/stw2303.
Kashi, A. (2019) Simulating the response of the secondary star of Eta Carinae to mass accretion at periastron passage. MNRAS, 486(1), 926–935. https://doi.org/10.1093/mnras/stz837.
Kashi, A. (2020) Wind collision and accretion simulations of the massive binary system HD 166734. MNRAS, 492(4), 5261–5270. https://doi.org/10.1093/mnras/staa203.
Kashi, A. (2023) Accretion in the binary system GG Carinae and implications for B[e] supergiants. MNRAS, 523(4), 5876–5886. https://doi.org/10.1093/mnras/stad1758.
Kashi, A., Davidson, K., and Humphreys, R. M. (2016) Recovery from giant eruptions in very massive stars. ApJ, 817(1), 66. https://doi.org/10.3847/0004-637X/817/1/66.
Kashi, A. and Michaelis, A. (2021) Numerical study of colliding winds in massive stars. Galaxies, 10(1), 4. https://doi.org/10.3390/galaxies10010004.
Kashi, A., Michaelis, A., and Kaminetsky, Y. (2022) Accretion in massive colliding-wind binaries and the effect of the wind momentum ratio. MNRAS, 516(3), 3193–3205. https://doi.org/10.1093/mnras/stac1912.
Kashi, A., Principe, D. A., Soker, N., and Kastner, J. H. (2021) The X-ray properties of Eta Carinae during its 2020 X-ray minimum. ApJ, 914(1), 47. https://doi.org/10.3847/1538-4357/abfa9c.
Kashi, A. and Soker, N. (2007) Modelling the radio light curve of η Carinae. MNRAS, 378(4), 1609–1618. https://doi.org/10.1111/j.1365-2966.2007.11908.x.
Kashi, A. and Soker, N. (2008) Accretion onto the companion of Eta Carinae during the spectroscopic event. V: The infrared decline. NewA, 13(8), 569–580. https://doi.org/10.1016/j.newast.2008.03.003.
Kashi, A. and Soker, N. (2009) Possible implications of mass accretion in Eta Carinae. NewA, 14(1), 11–24. https://doi.org/10.1016/j.newast.2008.04.003.
Kashi, A. and Soker, N. (2010) Periastron passage triggering of the 19th century eruptions of Eta Carinae. ApJ, 723(1), 602–611. https://doi.org/10.1088/0004-637X/723/1/602.
Kashi, A. and Soker, N. (2016) Orbital parameters for the 250 M⊙ Eta Carinae binary system. ApJ, 825(2), 105. https://doi.org/10.3847/0004-637X/825/2/105.
Koenigsberger, G., Morrell, N., Hillier, D. J., Gamen, R., Schneider, F. R. N., González-Jiménez, N., Langer, N., and Barbá, R. (2014) The HD 5980 multiple system: Masses and evolutionary status. AJ, 148(4), 62. https://doi.org/10.1088/0004-6256/148/4/62.
Kraus, M. (2019) A census of B[e] supergiants. Galaxies, 7(4), 83. https://doi.org/10.3390/galaxies7040083.
Kraus, M., Borges Fernandes, M., and de Araújo, F. X. (2010) Neutral material around the B[e] supergiant star lha 115-S 65: An outflowing disk or a detached Keplerian rotating disk? A&A, 517, A30. https://doi.org/10.1051/0004-6361/200913964.
Kraus, M., Cidale, L. S., Arias, M. L., Maravelias, G., Nickeler, D. H., Torres, A. F., Borges Fernandes, M., Aret, A., Curé, M., Vallverdú, R., and Barbá, R. H. (2016) Inhomogeneous molecular ring around the B[e] supergiant lha 120-S 73. A&A, 593, A112. https://doi.org/10.1051/0004-6361/201628493.
Kraus, M., Liimets, T., Moiseev, A., Sánchez Arias, J. P., Nickeler, D. H., Cidale, L. S., and Jones, D. (2021) Resolving the circumstellar environment of the Galactic B[e] supergiant star MWC 137.II. Nebular kinematics and stellar variability. AJ, 162(4), 150. https://doi.org/10.3847/1538-3881/ac1355.
Kraus, M., Oksala, M. E., Nickeler, D. H., Muratore, M. F., Borges Fernandes, M., Aret, A., Cidale, L. S., and de Wit, W. J. (2013) Molecular emission from GG Carinae’s circumbinary disk. A&A, 549, A28. https://doi.org/10.1051/0004-6361/201220442.
Kudritzki, R.-P. and Puls, J. (2000) Winds from hot stars. ARA&A, 38, 613–666. https://doi.org/10.1146/annurev.astro.38.1.613.
Langer, N. (2012) Presupernova evolution of massive single and binary stars. ARA&A, 50, 107–164. https://doi.org/10.1146/annurev-astro-081811-125534.
Lépine, S. and Moffat, A. F. J. (1999) Wind inhomogeneities in Wolf–Rayet stars. II. ınvestigation of emission-line profile variations. ApJ, 514(2), 909–931. https://doi.org/10.1086/306958.
Liimets, T., Kraus, M., Moiseev, A., Duronea, N., Cidale, L. S., and Fariña, C. (2022) Follow-up of extended shells around B[e] stars. Galaxies, 10(2), 41. https://doi.org/10.3390/galaxies10020041.
Livio, M., Soker, N., de Kool, M., and Savonije, G. J. (1986) Accretion from an inhomogeneous medium – III. General case and observational consequences. MNRAS, 222(2), 235–250. https://doi.org/10.1093/mnras/222.2.235.
Machado, M. A., Araújo, F. X. d., Lopes, D. d. F., and Pereira, C. B. (2004) Using high resolution data to investigate the variability of GG Carinae system. In IAU Colloquium 194 – Compact Binaries in the Galaxy and Beyond, edited by Tovmassian, G. and Sion, E., RMxAA Conference Series, volume 20, page 239. http://www.astroscu.unam.mx/rmaa/RMxAC..20/PDF/RMxAC..20_mmachado.pdf.
Madura, T. I., Gull, T. R., Owocki, S. P., Groh, J. H., Okazaki, A. T., and Russell, C. M. P. (2012) Constraining the absolute orientation of η Carinae’s binary orbit: a 3D dynamical model for the broad [Fe III] emission. MNRAS, 420(3), 2064–2086. https://doi.org/10.1111/j.1365-2966.2011.20165.x.
Maeder, A. (2009) Physics, Formation and Evolution of Rotating Stars. Springer, Berlin, Heidelberg (DE), xxi+832 pages. https://doi.org/10.1007/978-3-540-76949-1.
Mahy, L., Lanthermann, C., Hutsemékers, D., Kluska, J., Lobel, A., Manick, R., Miszalski, B., Reggiani, M., Sana, H., and Gosset, E. (2022) Multiplicity of Galactic luminous blue variable stars. A&A, 657, A4. https://doi.org/10.1051/0004-6361/202040062.
Maravelias, G., Kraus, M., Cidale, L. S., Borges Fernandes, M., Arias, M. L., Curé, M., and Vasilopoulos, G. (2018) Resolving the kinematics of the discs around Galactic B[e] supergiants. MNRAS, 480(1), 320–344. https://doi.org/10.1093/mnras/sty1747.
Marston, A. P. and McCollum, B. (2008) Extended shells around B[e] stars: ımplications for B[e] star evolution. A&A, 477(1), 193–202. https://doi.org/10.1051/0004-6361:20066086.
Martin, J. C., Davidson, K., Humphreys, R. M., Hillier, D. J., and Ishibashi, K. (2006) On the He II emission in η Carinae and the origin of its spectroscopic events. ApJ, 640(1), 474–490. https://doi.org/10.1086/500038.
Mason, B. D., Hartkopf, W. I., Gies, D. R., Henry, T. J., and Helsel, J. W. (2009) The high angular resolution multiplicity of massive stars. AJ, 137(2), 3358–3377. https://doi.org/10.1088/0004-6256/137/2/3358.
Mehner, A., Davidson, K., Humphreys, R. M., Walter, F. M., Baade, D., de Wit, W. J., Martin, J., Ishibashi, K., Rivinius, T., Martayan, C., Ruiz, M. T., and Weis, K. (2015) Eta Carinae’s 2014.6 spectroscopic event: Clues to the long-term recovery from its Great Eruption. A&A, 578, A122. https://doi.org/10.1051/0004-6361/201425522.
Morris, P. W., Gull, T. R., Hillier, D. J., Barlow, M. J., Royer, P., Nielsen, K., Black, J., and Swinyard, B. (2017) η Carinae’s dusty homunculus nebula from near-infrared to submillimeter wavelengths: Mass, composition, and evidence for fading opacity. ApJ, 842(2), 79. https://doi.org/10.3847/1538-4357/aa71b3.
Mukhij, B. and Kashi, A. (in prep.) Accretion and recovery in giant eruptions of massive stars.
Nagae, T., Oka, K., Matsuda, T., Fujiwara, H., Hachisu, I., and Boffin, H. M. J. (2004) Wind accretion in binary stars: I. Mass accretion ratio. A&A, 419(1), 335–343. https://doi.org/10.1051/0004-6361:20040070.
Nazé, Y., Gosset, E., Mahy, L., and Parkin, E. R. (2017) An X-ray view of HD 166734, a massive supergiant system. A&A, 607, A97. https://doi.org/10.1051/0004-6361/201630303.
Nazé, Y., Koenigsberger, G., Pittard, J. M., Parkin, E. R., Rauw, G., Corcoran, M. F., and Hillier, D. J. (2018) A changing wind collision. ApJ, 853(2), 164. https://doi.org/10.3847/1538-4357/aaa29c.
Nugis, T. and Lamers, H. J. G. L. M. (2000) Mass-loss rates of Wolf–Rayet stars as a function of stellar parameters. A&A, 360, 227–244. https://ui.adsabs.harvard.edu/abs/2000A&A...360..227N.
Oskinova, L. M., Hamann, W.-R., and Feldmeier, A. (2007) Neglecting the porosity of hot-star winds can lead to underestimating mass-loss rates. A&A, 476(3), 1331–1340. https://doi.org/10.1051/0004-6361:20066377.
Oudmaijer, R. D. and Miroshnichenko, A. S. (2017) Introduction to the B[e] phenomenon. In The B[e] Phenomenon: Forty Years of Studies, edited by Miroshnichenko, A., Zharikov, S., Korčáková, D., and Wolf, M., Astronomical Society of the Pacific Conference Series, volume 508, pages 3–10. http://aspbooks.org/custom/publications/paper/508-0003.html.
Owocki, S. (2010) Hot-star mass-loss mechanisms: Winds and outbursts. In Hot and Cool: Bridging Gaps in Massive Star Evolution, edited by Leitherer, C., Bennett, P. D., Morris, P. W., and Van Loon, J. T., Astronomical Society of the Pacific Conference Series, volume 425, pages 199–208. http://aspbooks.org/custom/publications/paper/425-0199.html.
Owocki, S. (2011) Theory of winds from hot, luminous massive stars. BSRSL, 80, 16–28. https://popups.uliege.be/0037-9565/index.php?id=2478.
Owocki, S. P. (2015) Instabilities in the envelopes and winds of very massive stars. In Very Massive Stars in the Local Universe, edited by Vink, J. S., Astrophysics and Space Science Library, volume 412, chapter 5, pages 113–156. Springer, Cham (CH). https://doi.org/10.1007/978-3-319-09596-7_5.
Parkin, E. R., Pittard, J. M., Corcoran, M. F., and Hamaguchi, K. (2011) Spiraling out of control: Three-dimensional hydrodynamical modeling of the colliding winds in η Carinae. ApJ, 726(2), 105. https://doi.org/10.1088/0004-637X/726/2/105.
Paxton, B., Cantiello, M., Arras, P., Bildsten, L., Brown, E. F., Dotter, A., Mankovich, C., Montgomery, M. H., Stello, D., Timmes, F. X., and Townsend, R. (2013) Modules for Experiments in Stellar Astrophysics (MESA): Planets, oscillations, rotation, and massive stars. ApJS, 208(1), 4. https://doi.org/10.1088/0067-0049/208/1/4.
Paxton, B., Marchant, P., Schwab, J., Bauer, E. B., Bildsten, L., Cantiello, M., Dessart, L., Farmer, R., Hu, H., Langer, N., Townsend, R. H. D., Townsley, D. M., and Timmes, F. X. (2015) Modules for Experiments in Stellar Astrophysics (MESA): Binaries, pulsations, and explosions. ApJS, 220(1), 15. https://doi.org/10.1088/0067-0049/220/1/15.
Podsiadlowski, Ph. (2010) Massive binary evolution. NewAR, 54(3-6), 39–44. https://doi.org/10.1016/j.newar.2010.09.023.
Pollock, A. M. T., Crowther, P. A., Tehrani, K., Broos, P. S., and Townsley, L. K. (2018) The 155-day X-ray cycle of the very massive Wolf– Rayet star Melnick 34 in the Large Magellanic Cloud. MNRAS, 474(3), 3228–3236. https://doi.org/10.1093/mnras/stx2879.
Porter, A., Blundell, K., and Lee, S. (2022) The circumbinary rings of GG Carinae: indications of disc eccentricity growth in the B[e] supergiant’s atomic emission lines. MNRAS, 509(2), 1720–1735. https://doi.org/10.1093/mnras/stab3083.
Porter, A., Grant, D., Blundell, K., and Lee, S. (2021) GG Carinae: orbital parameters and accretion indicators from phase-resolved spectroscopy and photometry. MNRAS, 501(4), 5554–5574. https://doi.org/10.1093/mnras/staa3749.
Puls, J., Markova, N., Scuderi, S., Stanghellini, C., Taranova, O. G., Burnley, A. W., and Howarth, I. D. (2006) Bright OB stars in the Galaxy. III. Constraints on the radial stratification of the clumping factor in hot star winds from a combined Hα, IR and radio analysis. A&A, 454(2), 625–651. https://doi.org/10.1051/0004-6361:20065073.
Puls, J., Vink, J. S., and Najarro, F. (2008) Mass loss from hot massive stars. A&ARv, 16(3-4), 209–325. https://doi.org/10.1007/s00159-008-0015-8.
Quataert, E., Fernández, R., Kasen, D., Klion, H., and Paxton, B. (2016) Super-Eddington stellar winds driven by near-surface energy deposition. MNRAS, 458(2), 1214–1233. https://doi.org/10.1093/mnras/stw365.
Richardson, N. D., Gies, D. R., Gull, T. R., Moffat, A. F. J., and St-Jean, L. (2015) The optical wind line variability of η Carinae during the 2009.0 event. AJ, 150(4), 109. https://doi.org/10.1088/0004-6256/150/4/109.
Ruffert, M. (1994) Three-dimensional hydrodynamic Bondi–Hoyle accretion. I. Code validation and stationary accretors. ApJ, 427, 342–350. https://doi.org/10.1086/174144.
Sana, H., de Mink, S. E., de Koter, A., Langer, N., Evans, C. J., Gieles, M., Gosset, E., Izzard, R. G., Le Bouquin, J.-B., and Schneider, F. R. N. (2012) Binary interaction dominates the evolution of massive stars. Sci, 337, 444–446. https://doi.org/10.1126/science.1223344.
Schneider, F. R. N., Podsiadlowski, Ph., and Laplace, E. (2024) Pre-supernova evolution and final fate of stellar mergers and accretors of binary mass transfer. A&A, 686, A45. https://doi.org/10.1051/0004-6361/202347854.
Schrøder, S. L., MacLeod, M., Ramirez-Ruiz, E., Mandel, I., Fragos, T., Loeb, A., and Everson, R. W. (2021) The evolution of binaries under the influence of radiation-driven winds from a stellar companion. arXiv e-prints: arXiv:2107.09675. https://doi.org/10.48550/arXiv.2107.09675.
Shenar, T., Sana, H., Marchant, P., Pablo, B., Richardson, N., Moffat, A. F. J., Van Reeth, T., Barbá, R. H., Bowman, D. M., Broos, P., Crowther, P. A., Clark, J. S., de Koter, A., de Mink, S. E., Dsilva, K., Gräfener, G., Howarth, I. D., Langer, N., Mahy, L., Maíz Apellániz, J., Pollock, A. M. T., Schneider, F. R. N., Townsley, L., and Vink, J. S. (2021) The Tarantula massive binary monitoring: V. R 144: a wind-eclipsing binary with a total mass ≳ 140M⊙. A&A, 650, A147. https://doi.org/10.1051/0004-6361/202140693.
Smartt, S. J. (2009) Progenitors of core-collapse supernovae. ARA&A, 47, 63–106. https://doi.org/10.1146/annurev-astro-082708-101737.
Smith, N. (2014) Mass loss: Its effect on the evolution and fate of high-mass stars. ARA&A, 52, 487–528. https://doi.org/10.1146/annurev-astro-081913-040025.
Smith, N. and Tombleson, R. (2015) Luminous blue variables are antisocial: their isolation implies that they are kicked mass gainers in binary evolution. MNRAS, 447(1), 598–617. https://doi.org/10.1093/mnras/stu2430.
Soker, N. (2001) The departure of η Carinae from axisymmetry and the binary hypothesis. MNRAS, 325(2), 584–588. https://doi.org/10.1046/j.1365-8711.2001.04439.x.
Soker, N. (2005) Accretion by the secondary in η Carinae during the spectroscopic event. I. Flow parameters. ApJ, 635(1), 540–546. https://doi.org/10.1086/497389.
Soker, N. and Behar, E. (2006) Accretion onto the companion of η Carinae during the spectroscopic event. III. The He II λ4686 line. ApJ, 652(2), 1563–1571. https://doi.org/10.1086/508336.
Soker, N., Livio, M., de Kool, M., and Savonije, G. J. (1986) Accretion of angular momentum from an inhomogeneous medium – II. ısothermal flow. MNRAS, 221(2), 445–452. https://doi.org/10.1093/mnras/221.2.445.
Stevens, I. R., Blondin, J. M., and Pollock, A. M. T. (1992) Colliding winds from early-type stars in binary systems. ApJ, 386, 265–287. https://doi.org/10.1086/171013.
Sundqvist, J. O., Puls, J., and Feldmeier, A. (2010) Mass loss from inhomogeneous hot star winds: I. Resonance line formation in 2D models. A&A, 510, A11. https://doi.org/10.1051/0004-6361/200912842.
Swings, J. P. (1974) Similarities in the spectra of three southern peculiar emission line stars with infrared excesses: HD 45677, HD 87643 and GG Carinae (HD 94878). A&A, 34, 333–334. https://ui.adsabs.harvard.edu/abs/1974A&A....34..333S.
Tehrani, K. A., Crowther, P. A., Bestenlehner, J. M., Littlefair, S. P., Pollock, A. M. T., Parker, R. J., and Schnurr, O. (2019) Weighing Melnick 34: the most massive binary system known. MNRAS, 484(2), 2692–2710. https://doi.org/10.1093/mnras/stz147.
Torres, A. F., Cidale, L. S., Kraus, M., Arias, M. L., Barbá, R. H., Maravelias, G., and Borges Fernandes, M. (2018) Resolving the clumpy circumstellar environment of the B[e] supergiant LHA 120-S 35. A&A, 612, A113. https://doi.org/10.1051/0004-6361/201731723.
Usov, V. V. (1992) Stellar wind collision and X-ray generation in massive binaries. ApJ, 389, 635–648. https://doi.org/10.1086/171236.
van Marle, A. J., Owocki, S. P., and Shaviv, N. J. (2008) Numerical simulations of continuum-driven winds of super-Eddington stars. MNRAS, 389(3), 1353–1359. https://doi.org/10.1111/j.1365-2966.2008.13648.x.
van Marle, A. J., Owocki, S. P., and Shaviv, N. J. (2009) On the behaviour of stellar winds that exceed the photon-tiring limit. MNRAS, 394(2), 595–604. https://doi.org/10.1111/j.1365-2966.2008.14366.x.
Vanbeveren, D., De Donder, E., Van Bever, J., Van Rensbergen, W., and De Loore, C. (1998) The WR and O-type star population predicted by massive star evolutionary synthesis. NewA, 3(7), 443–492. https://doi.org/10.1016/S1384-1076(98)00020-7.
Vink, J. S. (2015) Mass-loss rates of very massive stars. In Very Massive Stars in the Local Universe, edited by Vink, J. S., Astrophysics and Space Science Library, volume 412, chapter 4, pages 77–111. Springer, Cham (CH). https://doi.org/10.1007/978-3-319-09596-7_4.
Vink, J. S. (2022) Theory and diagnostics of hot star mass loss. ARA&A, 60, 203–246. https://doi.org/10.1146/annurev-astro-052920-094949.
Vishniac, E. T. (1994) Nonlinear instabilities in shock-bounded slabs. ApJ, 428(1), 186–208. https://doi.org/10.1086/174231.
Walder, R. and Folini, D. (2000) On the stability of colliding flows: Radiative shocks, thin shells, and supersonic turbulence. Ap&SS, 274(1-2), 343–352. https://doi.org/10.1023/A:1026597318472.
Walder, R. and Folini, D. (2002) Theoretical considerations on colliding clumped winds. In Interacting Winds from Massive Stars, edited by Moffat, A. F. J. and St-Louis, N., Astronomical Society of the Pacific Conference Series, volume 260, pages 595–604. http://www.aspbooks.org/a/volumes/article_details/?paper_id=24448.
Walder, R. and Folini, D. (2003) 3D-hydrodynamics of colliding winds in massive binaries. In A Massive Star Odyssey: From Main Sequence to Supernova, edited by van der Hucht, K., Herrero, A., and Esteban, C., Symposium – International Astronomical Union, volume 212, pages 139–147. https://doi.org/10.1017/S0074180900211741.
Weis, K. (2011) Nebulae around Luminous Blue Variables – large bipolar variety. Proceedings of the International Astronomical Union, 6(S272), 372–377. https://doi.org/10.1017/S1743921311010799.
Weis, K. and Bomans, D. J. (2020) Luminous blue variables. Galaxies, 8(1), 20. https://doi.org/10.3390/galaxies8010020.
Williams, P. M., Morrell, N. I., Boutsia, K., and Massey, P. (2021) The episodic dust-making Wolf–Rayet star HD 38030 in the Large Magellanic Cloud. MNRAS, 505(4), 5029–5037. https://doi.org/10.1093/mnras/stab1625.
Zapartas, E., de Mink, S. E., Justham, S., Smith, N., Renzo, M., and de Koter, A. (2021) Effect of binary evolution on the inferred initial and final core masses of hydrogen-rich, Type II supernova progenitors. A&A, 645, A6. https://doi.org/10.1051/0004-6361/202037744.
Zickgraf, F.-J. (2006) B[e] supergiants in the Magellanic Clouds. In Stars with the B[e] Phenomenon, edited by Kraus, M. and Miroshnichenko, A. S., Astronomical Society of the Pacific Conference Series, volume 355, pages 135–145. http://aspbooks.org/custom/publications/paper/355-0135.html.
Zickgraf, F.-J., Humphreys, R. M., Lamers, H. J. G. L. M., Smolinski, J., Wolf, B., and Stahl, O. (1996) Spectroscopic study of the outflowing disk winds of B[e] supergiants in the Magellanic Clouds. A&A, 315, 510–520. https://ui.adsabs.harvard.edu/abs/1996A&A...315..510Z.
Zickgraf, F.-J., Wolf, B., Stahl, O., Leitherer, C., and Appenzeller, I. (1986) B(e)-supergiants of the Magellanic Clouds. A&A, 163, 119–134. https://ui.adsabs.harvard.edu/abs/1986A&A...163..119Z.
To cite this article
About: Amit Kashi
Astrophysics, Geophysics and Space Science (AGASS) Center, Ariel University, Ariel, 4070000, Israel
email : kashi@ariel.ac.il