- Portada
- Volume 93 - Année 2024
- No 3 - 41st Liège International Astrophysical Coll...
- The Polstar UV Spectropolarimetry Mission
Vista(s): 17 (0 ULiège)
Descargar(s): 0 (0 ULiège)
The Polstar UV Spectropolarimetry Mission
Documento adjunto(s)
Version PDF originaleAbstract
The Polstar small explorer concept is for an ultraviolet (UV) spectropolarimetry space telescope mission with a focus on massive star astrophysics. The instrument waveband will be from 115 nm to 286 nm for spectroscopy, and from 122 nm to 286 nm for polarimetry. All four Stokes parameters, I, Q, U, and V , will be measured at a resolving power of R=20,000 (15 km s−1 velocity resolution). The telescope aperture will be 40 cm with an effective area of about 22 cm2 at a reference wavelength of 150 nm. The thrust of the science goals will be to determine the astrophysics of angular momentum exchange and transport, and consequences for massive star properties and evolution. This includes the effects of rapid to critical rotation for individual stars (magnetic and non-magnetic), and the effects of mass transfer for massive binaries, including identification of stripped core stars. If selected by the NASA/SMEX program, Polstar would launch around 2031 and observe ∼300 stars to achieve science goals. The mission will include a Guest Observer program to advance discovery in other areas of astrophysics.
This work is distributed under the Creative Commons CC BY 4.0 Licence.
Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.
Bibliographie
Bailey, J., Howarth, I. D., Cotton, D. V., Kedziora-Chudczer, L., De Horta, A., Martell, S. L., Eldridge, C., and Luckas, P. (2024a) Rapid polarization variations in the O4 supergiant ζ Puppis. MNRAS, 529(1), 374–392. https://doi.org/10.1093/mnras/stae548.
Bailey, J., Lewis, F., Howarth, I. D., Cotton, D. V., Marshall, J. P., and Kedziora-Chudczer, L. (2024b) Epsilon Sagittarii: An extreme rapid rotator with a decretion disk. arXiv e-prints: arXiv:2407.11352. https://doi.org/10.48550/arXiv.2407.11352.
Belczynski, K., Bulik, T., Fryer, C. L., Ruiter, A., Valsecchi, F., Vink, J. S., and Hurley, J. R. (2010) On the maximum mass of stellar black holes. ApJ, 714(2), 1217–1226. https://doi.org/10.1088/0004-637X/714/2/1217.
Clarke, D. (2010) Stellar Polarimetry. Wiley-VCH Verlag, Weinheim (DE), xvi+415 pages. https://doi.org/10.1002/9783527628322.
Collins, G. W., II, Truax, R. J., and Cranmer, S. R. (1991) Model atmospheres for rotating B stars. ApJS, 77, 541–606. https://doi.org/10.1086/191616.
Domiciano de Souza, A., Kervella, P., Jankov, S., Abe, L., Vakili, F., di Folco, E., and Paresce, F. (2003) The spinning-top Be star Achernar from VLTI-VINCI. A&A, 407(3), L47–L50. https://doi.org/10.1051/0004-6361:20030786.
Donati, J.-F. and Landstreet, J. D. (2009) Magnetic fields of nondegenerate stars. ARA&A, 47, 333–370. https://doi.org/10.1146/annurev-astro-082708-101833.
Espinosa Lara, F. and Rieutord, M. (2011) Gravity darkening in rotating stars. A&A, 533, A43. https://doi.org/10.1051/0004-6361/201117252.
Folsom, C. P., Ignace, R., Erba, C., Casini, R., del Pino Alemán, T., Gayley, K., Hobbs, K., Manso Sainz, R., Neiner, C., Petit, V., Shultz, M. E., and Wade, G. A. (2022) Ultraviolet spectropolarimetry: investigating stellar magnetic field diagnostics. Ap&SS, 367(12), 125. https://doi.org/10.1007/s10509-022-04140-8.
Harmanec, P., Morand, F., Bonneau, D., Jiang, Y., Yang, S., Guinan, E. F., Hall, D. S., Mourard, D., Hadrava, P., Bozic, H., Sterken, C., Tallon-Bosc, I., Walker, G. A. H., McCook, G. P., Vakili, F., Stee, P., and Le Contel, J. M. (1996) Jet-like structures in β Lyrae. Results of optical interferometry, spectroscopy and photometry. A&A, 312, 879–896. https://ui.adsabs.harvard.edu/abs/1996A&A...312..879H.
Harries, T. J., Hillier, D. J., and Howarth, I. D. (1998) A spectropolarimetric survey of northern hemisphere Wolf–Rayet stars. MNRAS, 296(4), 1072–1088. https://doi.org/10.1046/j.1365-8711.1998.01508.x.
Harrington, J. P. and Collins, G. W., II (1968) Intrinsic polarization of rapidly rotating early-type stars. ApJ, 151, 1051–1056. https://doi.org/10.1086/149504.
Hillier, D. J. (1994) The calculation of continuum polarization due to the Rayleigh scattering phase matrix in multi–scattering axisymmetric envelopes. A&A, 289, 492–504. https://ui.adsabs.harvard.edu/abs/1994A&A...289..492H.
Hoffman, J. L., Nordsieck, K. H., and Fox, G. K. (1998) Spectropolarimetric evidence for a bipolar flow in β Lyrae. AJ, 115(4), 1576–1591. https://doi.org/10.1086/300274.
Huang, W., Gies, D. R., and McSwain, M. V. (2010) A stellar rotation census of B stars: From ZAMS to TAMS. ApJ, 722(1), 605–619. https://doi.org/10.1088/0004-637X/722/1/605.
Hunter, I., Brott, I., Lennon, D. J., Langer, N., Dufton, P. L., Trundle, C., Smartt, S. J., de Koter, A., Evans, C. J., and Ryans, R. S. I. (2008) The VLT FLAMES survey of massive stars: Rotation and nitrogen enrichment as the key to understanding massive star evolution. ApJ, 676(1), L29–L32. https://doi.org/10.1086/587436.
Ignace, R., Bjorkman, J. E., Chené, A.-N., Erba, C., Fabiani, L., Moffat, A. F. J., Sincennes, R., and St-Louis, N. (2023) Modelling variable linear polarization produced by Co-rotating ınteraction Regions (CIRs) across optical recombination lines of Wolf–Rayet stars. MNRAS, 526(1), 1298–1307. https://doi.org/10.1093/mnras/stad2878.
Ignace, R., Cassinelli, J. P., and Nordsieck, K. H. (1999) The Hanle effect as a diagnostic of magnetic fields in stellar envelopes. II. Some theoretical results for resolved line profiles. ApJ, 520(1), 335–346. https://doi.org/10.1086/307435.
Ignace, R., Nordsieck, K. H., and Cassinelli, J. P. (1997) The Hanle effect as a diagnostic of magnetic fields in stellar envelopes. I. Theoretical results for integrated line profiles. ApJ, 486(1), 550–570. https://doi.org/10.1086/304512.
Klement, R., Carciofi, A. C., Rivinius, T., Ignace, R., Matthews, L. D., Torstensson, K., Gies, D., Vieira, R. G., Richardson, N. D., Domiciano de Souza, A., Bjorkman, J. E., Hallinan, G., Faes, D. M., Mota, B., Gullingsrud, A. D., de Breuck, C., Kervella, P., Curé, M., and Gunawan, D. (2019) Prevalence of SED turndown among classical Be stars: Are all Be stars close binaries? ApJ, 885(2), 147. https://doi.org/10.3847/1538-4357/ab48e7.
Kummer, F., Toonen, S., and de Koter, A. (2023) The main evolutionary pathways of massive hierarchical triple stars. A&A, 678, A60. https://doi.org/10.1051/0004-6361/202347179.
Langer, N. (2012) Presupernova evolution of massive single and binary stars. ARA&A, 50, 107–164. https://doi.org/10.1146/annurev-astro-081811-125534.
Maeder, A. and Meynet, G. (2000) Stellar evolution with rotation. VI. The Eddington and Ω-limits, the rotational mass loss for OB and LBV stars. A&A, 361, 159–166. https://ui.adsabs.harvard.edu/abs/2000A&A...361..159M.
Nathaniel, K., Vigna-Gómez, A., Grichener, A., Farmer, R., Renzo, M., and Everson, R. W. (2024) Population synthesis of thorne–żytkow objects: Rejuvenated donors and unexplored progenitors in the common envelope formation channel. arXiv e-prints: arXiv:2407.11680. https://doi.org/10.48550/arXiv.2407.11680.
Nomoto, K., Kobayashi, C., and Tominaga, N. (2013) Nucleosynthesis in stars and the chemical enrichment of galaxies. ARA&A, 51, 457–509. https://doi.org/10.1146/annurev-astro-082812-140956.
Öhman, Y. (1946) On the possibility of tracing polarization effects in the rotational profiles of early–type stars. ApJ, 104, 460–462. https://doi.org/10.1086/144879.
Penny, L. R. (1996) Projected rotational velocities of O-type stars. ApJ, 463, 737–746. https://doi.org/10.1086/177286.
Podsiadlowski, Ph., Joss, P. C., and Hsu, J. J. L. (1992) Presupernova evolution in massive interacting binaries. ApJ, 391, 246. https://doi.org/10.1086/171341.
Renzo, M., Zapartas, E., de Mink, S. E., Götberg, Y., Justham, S., Farmer, R. J., Izzard, R. G., Toonen, S., and Sana, H. (2019) Massive runaway and walkaway stars. A study of the kinematical imprints of the physical processes governing the evolution and explosion of their binary progenitors. A&A, 624, A66. https://doi.org/10.1051/0004-6361/201833297.
Sana, H., de Mink, S. E., de Koter, A., Langer, N., Evans, C. J., Gieles, M., Gosset, E., Izzard, R. G., Le Bouquin, J.-B., and Schneider, F. R. N. (2012) Binary interaction dominates the evolution of massive stars. Sci, 337, 444–446. https://doi.org/10.1126/science.1223344.
Scowen, P. A., Gayley, K., Ignace, R., Neiner, C., Vasudevan, G., Woodruff, R., Casini, R., Shultz, M., Andersson, B.-G., and Wisniewski, J. (2022) The Polstar high resolution spectropolarimetry MIDEX mission. Ap&SS, 367(12), 121. https://doi.org/10.1007/s10509-022-04107-9.
Serkowski, K., Mathewson, D. S., and Ford, V. L. (1975) Wavelength dependence of interstellar polarization and ratio of total to selective extinction. ApJ, 196, 261–290. https://doi.org/10.1086/153410.
St-Louis, N., Tremblay, P., and Ignace, R. (2018) Polarization light curve modelling of corotating interaction regions in the wind of the Wolf–Rayet star WR 6. MNRAS, 474(2), 1886–1899. https://doi.org/10.1093/mnras/stx2813.
Stenflo, J. O. (1994) Solar Magnetic Fields. Astrophysics and Space Science Library. Kluwer Academic Publishers, Dordrecht (NL), xv+385 pages. https://doi.org/10.1007/978-94-015-8246-9.
Stenflo, J. O. (2013) Solar magnetic fields as revealed by Stokes polarimetry. A&ARv, 21, 66. https://doi.org/10.1007/s00159-013-0066-3.
Toonen, S., Portegies Zwart, S., Hamers, A. S., and Bandopadhyay, D. (2020) The evolution of stellar triples. The most common evolutionary pathways. A&A, 640, A16. https://doi.org/10.1051/0004-6361/201936835.
Ud-Doula, A., Owocki, S. P., and Townsend, R. H. D. (2009) Dynamical simulations of magnetically channelled line–driven stellar winds – III. Angular momentum loss and rotational spin-down. MNRAS, 392(3), 1022–1033. https://doi.org/10.1111/j.1365-2966.2008.14134.x.
Vink, J. S. (2022) Theory and diagnostics of hot star mass loss. ARA&A, 60, 203–246. https://doi.org/10.1146/annurev-astro-052920-094949.
von Zeipel, H. (1924) The radiative equilibrium of a rotating system of gaseous masses. MNRAS, 84, 665–683. https://doi.org/10.1093/mnras/84.9.665.
Whittet, D. C. B., Martin, P. G., Hough, J. H., Rouse, M. F., Bailey, J. A., and Axon, D. J. (1992) Systematic variations in the wavelength dependence of interstellar linear polarization. ApJ, 386, 562–577. https://doi.org/10.1086/171039.
Para citar este artículo
Acerca de: Richard Ignace
email : ignace@etsu.edu