ya que 05 febrero 2011 :
Vista(s): 14 (0 ULiège)
Descargar(s): 0 (0 ULiège)
print        
Andrea Ercolino

Interacting Supernovae from Wide Mass-transferring Binaries

(Volume 93 - Année 2024 — No 3 - 41st Liège International Astrophysical Colloquium)
Article
Open Access

Documento adjunto(s)

Version PDF originale

Abstract

The light curves and spectra of many Type I and Type II supernovae (SNe) are heavily influenced by the interaction of the SN ejecta with circumstellar material (CSM) surrounding the progenitor star. The observed diversity shows that many progenitors have undergone some level of stripping and polluted their CSM shortly before the explosion. The presence of a binary companion and the mass transfer that can ensue offers a mechanism that can give rise to this diversity. We present a set of detailed massive evolutionary models in which the donor star, a Red Supergiant (RSG) is in a wide orbit around a main-sequence companion, and undergoes stable or unstable mass transfer in the later stages of evolution, up to the moment of core collapse. We also discuss some significant physics of these systems that may impact our results, from the presence of pulsations and extended atmospheres in RSGs, to the initial eccentricity of the orbit. The resulting SN types range from Type IIP to H-deficient IIb and H-free Ib. In models undergoing stable mass transfer, the material lost during this process is expected to form a dense CSM surrounding the system by the time of core collapse and give rise to significant interaction effects in the SN light curve and spectra. In the systems with unstable mass transfer mass transfer, the SN may occur during common-envelope evolution. In this case, the progenitor may show significant variability in the last few thousand years before core collapse, and the following SN will likely exhibit strong interaction effects.

Keywords : binaries: general, circumstellar matter, stars: massive, stars: mass-loss, supernovae: general

This work is distributed under the Creative Commons CC BY 4.0 Licence.

Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.

Bibliographie

[1] Shappee, B., Prieto, J., Stanek, K. Z., Kochanek, C. S., Holoien, T., Jencson, J., Basu, U., Beacom, J. F., Szczygiel, D., Pojmanski, G., Brimacombe, J., Dubberley, M., Elphick, M., Foale, S., Hawkins, E., Mullins, D., Rosing, W., Ross, R., and Walker, Z. (2014) All Sky Automated Survey for SuperNovae (ASAS-SN or “Assassin”). In AAS Meeting #223, American Astronomical Society Meeting Abstracts, volume 223.

[2] Tonry, J. L., Denneau, L., Heinze, A. N., Stalder, B., Smith, K. W., Smartt, S. J., Stubbs, C. W., Weiland, H. J., and Rest, A. (2018) ATLAS: A high-cadence all-sky survey system. PASP, 130, 064505. https://doi.org/10.1088/1538-3873/aabadf.

[3] Kaiser, N., Burgett, W., Chambers, K., Denneau, L., Heasley, J., Jedicke, R., Magnier, E., Morgan, J., Onaka, P., and Tonry, J. (2010) The Pan-STARRS wide-field optical/NIR imaging survey. In Ground-based and Airborne Telescopes III, edited by Stepp, L. M., Gilmozzi, R., and Hall, H. J., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 7733. SPIE. https://doi.org/10.1117/12.859188.

[4] Law, N. M., Kulkarni, S. R., Dekany, R. G., Ofek, E. O., Quimby, R. M., Nugent, P. E., Surace, J., Grillmair, C. C., Bloom, J. S., Kasliwal, M. M., Bildsten, L., Brown, T., Cenko, S. B., Ciardi, D., Croner, E., Djorgovski, S. G., van Eyken, J., Filippenko, A. V., Fox, D. B., Gal-Yam, A., Hale, D., Hamam, N., Helou, G., Henning, J., Howell, D. A., Jacobsen, J., Laher, R., Mattingly, S., McKenna, D., Pickles, A., Poznanski, D., Rahmer, G., Rau, A., Rosing, W., Shara, M., Smith, R., Starr, D., Sullivan, M., Velur, V., Walters, R., and Zolkower, J. (2009) The Palomar Transient Factory: System overview, performance, and first results. PASP, 121, 1395–1408. https://doi.org/10.1086/648598.

[5] Bellm, E. C., Kulkarni, S. R., Graham, M. J., Dekany, R., Smith, R. M., Riddle, R., Masci, F. J., Helou, G., Prince, T. A., Adams, S. M., Barbarino, C., Barlow, T., Bauer, J., Beck, R., Belicki, J., Biswas, R., Blagorodnova, N., Bodewits, D., Bolin, B., Brinnel, V., Brooke, T., Bue, B., Bulla, M., Burruss, R., Cenko, S. B., Chang, C.-K., Connolly, A., Coughlin, M., Cromer, J., Cunningham, V., De, K., Delacroix, A., Desai, V., Duev, D. A., Eadie, G., Farnham, T. L., Feeney, M., Feindt, U., Flynn, D., Franckowiak, A., Frederick, S., Fremling, C., Gal-Yam, A., Gezari, S., Giomi, M., Goldstein, D. A., Golkhou, V. Z., Goobar, A., Groom, S., Hacopians, E., Hale, D., Henning, J., Ho, A. Y. Q., Hover, D., Howell, J., Hung, T., Huppenkothen, D., Imel, D., Ip, W.-H., Ivezić, Ž., Jackson, E., Jones, L., Juric, M., Kasliwal, M. M., Kaspi, S., Kaye, S., Kelley, M. S. P., Kowalski, M., Kramer, E., Kupfer, T., Landry, W., Laher, R. R., Lee, C.-D., Lin, H. W., Lin, Z.-Y., Lunnan, R., Giomi, M., Mahabal, A., Mao, P., Miller, A. A., Monkewitz, S., Murphy, P., Ngeow, C.-C., Nordin, J., Nugent, P., Ofek, E., Patterson, M. T., Penprase, B., Porter, M., Rauch, L., Rebbapragada, U., Reiley, D., Rigault, M., Rodriguez, H., van Roestel, J., Rusholme, B., Santen, J. v., Schulze, S., Shupe, D. L., Singer, L. P., Soumagnac, M. T., Stein, R., Surace, J., Sollerman, J., Szkody, P., Taddia, F., Terek, S., Van Sistine, A., van Velzen, S., Vestrand, W. T., Walters, R., Ward, C., Ye, Q.-Z., Yu, P.-C., Yan, L., and Zolkower, J. (2018) The Zwicky Transient Facility: System overview, performance, and first results. PASP, 131, 018002. https://doi.org/10.1088/1538-3873/aaecbe.

[6] Fransson, C., Ergon, M., Challis, P. J., Chevalier, R. A., France, K., Kirshner, R. P., Marion, G. H., Milisavljevic, D., Smith, N., Bufano, F., Friedman, A. S., Kangas, T., Larsson, J., Mattila, S., Benetti, S., Chornock, R., Czekala, I., Soderberg, A., and Sollerman, J. (2014) High-density circumstellar interaction in the luminous Type IIn SN 2010jl: The first 1100 days. ApJ, 797(2), 118. https://doi.org/10.1088/0004-637X/797/2/118.

[7] Smith, N., Foley, R. J., Bloom, J. S., Li, W., Filippenko, A. V., Gavazzi, R., Ghez, A., Konopacky, Q., Malkan, M. A., Marshall, P. J., Pooley, D., Treu, T., and Woo, J.-H. (2008) Late-time observations of SN 2006gy: Still going strong. ApJ, 686(1), 485–491. https://doi.org/10.1086/590141.

[8] Yaron, O., Perley, D. A., Gal-Yam, A., Groh, J. H., Horesh, A., Ofek, E. O., Kulkarni, S. R., Sollerman, J., Fransson, C., Rubin, A., Szabo, P., Sapir, N., Taddia, F., Cenko, S. B., Valenti, S., Arcavi, I., Howell, D. A., Kasliwal, M. M., Vreeswijk, P. M., Khazov, D., Fox, O. D., Cao, Y., Gnat, O., Kelly, P. L., Nugent, P. E., Filippenko, A. V., Laher, R. R., Wozniak, P. R., Lee, W. H., Rebbapragada, U. D., Maguire, K., Sullivan, M., and Soumagnac, M. T. (2017) Confined dense circumstellar material surrounding a regular type II supernova. NatPh, 13(5), 510–517. https://doi.org/10.1038/nphys4025.

[9] Margutti, R., Kamble, A., Milisavljevic, D., Zapartas, E., de Mink, S. E., Drout, M., Chornock, R., Risaliti, G., Zauderer, B. A., Bietenholz, M., Cantiello, M., Chakraborti, S., Chomiuk, L., Fong, W., Grefenstette, B., Guidorzi, C., Kirshner, R., Parrent, J. T., Patnaude, D., Soderberg, A. M., Gehrels, N. C., and Harrison, F. (2017) Ejection of the massive hydrogen-rich envelope timed with the collapse of the stripped SN 2014C. ApJ, 835(2), 140. https://doi.org/10.3847/1538-4357/835/2/140.

[10] Leonard, D. C., Filippenko, A. V., Barth, A. J., and Matheson, T. (2000) Evidence for asphericity in the type IIn supernova SN 1998S. ApJ, 536(1), 239–254. https://doi.org/10.1086/308910.

[11] Smith, N. and Arnett, W. D. (2014) Preparing for an explosion: Hydrodynamic instabilities and turbulence in presupernovae. ApJ, 785(2), 82. https://doi.org/10.1088/0004-637X/785/2/82.

[12] Quataert, E. and Shiode, J. (2012) Wave-driven mass loss in the last year of stellar evolution: setting the stage for the most luminous core-collapse supernovae. MNRAS Lett., 423(1), L92–L96. https://doi.org/10.1111/j.1745-3933.2012.01264.x.

[13] Woosley, S. E. and Heger, A. (2015) The remarkable deaths of 9–11 solar mass stars. ApJ, 810(1), 34. https://doi.org/10.1088/0004-637X/810/1/34.

[14] Fuller, J. (2017) Pre-supernova outbursts via wave heating in massive stars – I. Red supergiants. MNRAS, 470(2), 1642–1656. https://doi.org/10.1093/mnras/stx1314.

[15] Sana, H., de Mink, S. E., de Koter, A., Langer, N., Evans, C. J., Gieles, M., Gosset, E., Izzard, R. G., Le Bouquin, J.-B., and Schneider, F. R. N. (2012) Binary interaction dominates the evolution of massive stars. Sci, 337, 444–446. https://doi.org/10.1126/science.1223344.

[16] Ercolino, A., Jin, H., Langer, N., and Dessart, L. (2024) Interacting supernovae from wide massive binary systems. A&A, 685, A58. https://doi.org/10.1051/0004-6361/202347646.

[17] Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., and Timmes, F. (2011) Modules for Experiments in Stellar Astrophysics (MESA). ApJS, 192(1), 3. https://doi.org/10.1088/0067-0049/192/1/3.

[18] Paxton, B., Cantiello, M., Arras, P., Bildsten, L., Brown, E. F., Dotter, A., Mankovich, C., Montgomery, M. H., Stello, D., Timmes, F. X., and Townsend, R. (2013) Modules for Experiments in Stellar Astrophysics (MESA): Planets, oscillations, rotation, and massive stars. ApJS, 208(1), 4. https://doi.org/10.1088/0067-0049/208/1/4.

[19] Paxton, B., Marchant, P., Schwab, J., Bauer, E. B., Bildsten, L., Cantiello, M., Dessart, L., Farmer, R., Hu, H., Langer, N., Townsend, R. H. D., Townsley, D. M., and Timmes, F. X. (2015) Modules for Experiments in Stellar Astrophysics (MESA): Binaries, pulsations, and explosions. ApJS, 220(1), 15. https://doi.org/10.1088/0067-0049/220/1/15.

[20] Paxton, B., Schwab, J., Bauer, E. B., Bildsten, L., Blinnikov, S., Duffell, P., Farmer, R., Goldberg, J. A., Marchant, P., Sorokina, E., Thoul, A., Townsend, R. H. D., and Timmes, F. X. (2018) Modules for Experiments in Stellar Astrophysics (MESA): Convective boundaries, element diffusion, and massive star explosions. ApJS, 234(2), 34. https://doi.org/10.3847/1538-4365/aaa5a8.

[21] Paxton, B., Smolec, R., Schwab, J., Gautschy, A., Bildsten, L., Cantiello, M., Dotter, A., Farmer, R., Goldberg, J. A., Jermyn, A. S., Kanbur, S. M., Marchant, P., Thoul, A., Townsend, R. H. D., Wolf, W. M., Zhang, M., and Timmes, F. X. (2019) Modules for Experiments in Stellar Astrophysics (MESA): Pulsating variable stars, rotation, convective boundaries, and energy conservation. ApJS, 243(1), 10. https://doi.org/10.3847/1538-4365/ab2241.

[22] Smartt, S. J. (2009) Progenitors of core-collapse supernovae. ARA&A, 47, 63–106. https://doi.org/10.1146/annurev-astro-082708-101737.

[23] Perley, D. A., Fremling, C., Sollerman, J., Miller, A. A., Dahiwale, A. S., Sharma, Y., Bellm, E. C., Biswas, R., Brink, T. G., Bruch, R. J., De, K., Dekany, R., Drake, A. J., Duev, D. A., Filippenko, A. V., Gal-Yam, A., Goobar, A., Graham, M. J., Graham, M. L., Ho, A. Y. Q., Irani, I., Kasliwal, M. M., Kim, Y.-L., Kulkarni, S. R., Mahabal, A., Masci, F. J., Modak, S., Neill, J. D., Nordin, J., Riddle, R. L., Soumagnac, M. T., Strotjohann, N. L., Schulze, S., Taggart, K., Tzanidakis, A., Walters, R. S., and Yan, L. (2020) The Zwicky Transient Facility bright transient survey. II. A public statistical sample for exploring supernova demographics*. ApJ, 904(1), 35. https://doi.org/10.3847/1538-4357/abbd98.

[24] Pollmann, E. and Bennett, P. (2020) Spectroscopic monitoring of the 2017–2019 eclipse of VV Cephei. JAAVSO, 48(2), 118–123. https://apps.aavso.org/jaavso/article/3583/.

[25] Maíz Apellániz, J., Holgado, G., Pantaleoni González, M., and Caballero, J. A. (2023) Stellar variability in Gaia DR3: I. Three-band photometric dispersions for 145 million sources. A&A, 677, A137. https://doi.org/10.1051/0004-6361/202346759.

[26] Heger, A., Jeannin, L., Langer, N., and Baraffe, I. (1997) Pulsations in red supergiants with high L/M ratio. Implications for the stellar and circumstellar structure of supernova progenitors. A&A, 327, 224–230. https://ui.adsabs.harvard.edu/abs/1997A&A...327..224H.

[27] Yoon, S.-Ch. and Cantiello, M. (2010) Evolution of massive stars with pulsation-driven superwinds during the red supergiant phase. ApJL, 717(1), L62–L65. https://doi.org/10.1088/2041-8205/717/1/L62.

[28] Moriya, T. J. and Langer, N. (2015) Pulsations of red supergiant pair-instability supernova progenitors leading to extreme mass loss. A&A, 573, A18. https://doi.org/10.1051/0004-6361/201424957.

[29] Kee, N. D., Sundqvist, J. O., Decin, L., de Koter, A., and Sana, H. (2021) Analytic, dust-independent mass-loss rates for red supergiant winds initiated by turbulent pressure. A&A, 646, A180. https://doi.org/10.1051/0004-6361/202039224.

[30] González-Torà, G., Wittkowski, M., Davies, B., Plez, B., and Kravchenko, K. (2023) The effect of winds on atmospheric layers of red supergiants: I. Modelling for interferometric observations. A&A, 669, A76. https://doi.org/10.1051/0004-6361/202244503.

[31] Arroyo-Torres, B., Wittkowski, M., Chiavassa, A., Scholz, M., Freytag, B., Marcaide, J. M., Hauschildt, P. H., Wood, P. R., and Abellan, F. J. (2015) What causes the large extensions of red supergiant atmospheres? Comparisons of interferometric observations with 1D hydrostatic, 3D convection, and 1D pulsating model atmospheres. A&A, 575, A50. https://doi.org/10.1051/0004-6361/201425212.

[32] Jiang, S. Y. and Huang, R. Q. (1997) The effect of turbulent pressure on the red giants and AGB stars. I. On the internal structure and evolution. A&A, 317, 114–120. https://ui.adsabs.harvard.edu/abs/1997A&A...317..114J.

[33] Stothers, R. B. (2003) Turbulent pressure in the envelopes of yellow hypergiants and luminous blue variables. ApJ, 589(2), 960–967. https://doi.org/10.1086/374713.

[34] Grassitelli, L., Fossati, L., Langer, N., Simón-Díaz, S., Castro, N., and Sanyal, D. (2016) Metallicity dependence of turbulent pressure and macroturbulence in stellar envelopes. A&A, 593, A14. https://doi.org/10.1051/0004-6361/201628912.

[35] Goldberg, J. A., Jiang, Y.-F., and Bildsten, L. (2022) Numerical simulations of convective three-dimensional red supergiant envelopes. ApJ, 929(2), 156. https://doi.org/10.3847/1538-4357/ac5ab3.

[36] Mohamed, S. and Podsiadlowski, Ph. (2007) Wind Roche–Lobe overflow: a new mass-transfer mode for wide binaries. In 15th European Workshop on White Dwarfs, edited by Napiwotzki, R. and Burleigh, M. R., Astronomical Society of the Pacific Conference Series, volume 372, pages 397–400. http://aspbooks.org/custom/publications/paper/372-0397.html.

[37] Mohamed, S. and Podsiadlowski, Ph. (2010) Understanding mass transfer in wind-interacting binaries: SPH models of “wind Roche-lobe Overflow”. In International Conference on Binaries: in celebration of Ron Webbink’s 65th Birthday, edited by Kalogera, V. and van der Sluys, M., AIP Conference Proceedings, volume 1314, pages 51–52. https://doi.org/10.1063/1.3536409.

[38] Bruch, R. J., Gal-Yam, A., Yaron, O., Chen, P., Strotjohann, N. L., Irani, I., Zimmerman, E., Schulze, S., Yang, Y., Kim, Y.-L., Bulla, M., Sollerman, J., Rigault, M., Ofek, E., Soumagnac, M., Masci, F. J., Fremling, C., Perley, D., Nordin, J., Cenko, S. B., Ho, A. Y. Q., Adams, S., Adreoni, I., Bellm, E. C., Blagorodnova, N., Burdge, K., De, K., Dekany, R. G., Dhawan, S., Drake, A. J., Duev, D. A., Graham, M., Graham, M. L., Jencson, J., Karamehmetoglu, E., Kasliwal, M. M., Kulkarni, S., Miller, A. A., Neill, J. D., Prince, T. A., Riddle, R., Rusholme, B., Sharma, Y., Smith, R., Sravan, N., Taggart, K., Walters, R., and Yan, L. (2023) The prevalence and influence of circumstellar material around hydrogen-rich supernova progenitors. ApJ, 952(2), 119. https://doi.org/10.3847/1538-4357/acd8be.

[39] Chatzopoulos, E., Wheeler, J. C., Vinko, J., Horvath, Z. L., and Nagy, A. (2013) Analytical light curve models of superluminous supernovae: χ2-minimization of parameter fits. ApJ, 773(1), 76. https://doi.org/10.1088/0004-637X/773/1/76.

[40] Villar, V. A., Berger, E., Metzger, B. D., and Guillochon, J. (2017) Theoretical models of optical transients. I. A broad exploration of the duration–luminosity phase space. ApJ, 849(1), 70. https://doi.org/10.3847/1538-4357/aa8fcb.

[41] Guillochon, J., Nicholl, M., Villar, V. A., Mockler, B., Narayan, G., Mandel, K. S., Berger, E., and Williams, P. K. G. (2018) MOSFiT: Modular Open Source Fitter for Transients. ApJS, 236(1), 6. https://doi.org/10.3847/1538-4365/aab761.

[42] Theuns, T. and Jorissen, A. (1993) Wind accretion in binary stars – I. Intricacies of the flow structure. MNRAS, 265, 946–967. https://doi.org/10.1093/mnras/265.4.946.

[43] Mastrodemos, N. and Morris, M. (1998) Bipolar preplanetary nebulae: Hydrodynamics of dusty winds in binary systems. I. Formation of accretion disks. ApJ, 497(1), 303–329. https://doi.org/10.1086/305465.

[44] Walder, R., Folini, D., and Shore, S. N. (2008) 3D simulations of RS Ophiuchi: from accretion to nova blast. A&A, 484(1), L9–L12. https://doi.org/10.1051/0004-6361:200809703.

[45] Booth, R. A., Mohamed, S., and Podsiadlowski, Ph. (2016) Modelling the circumstellar medium in RS Ophiuchi and its link to Type Ia supernovae. MNRAS, 457(1), 822–835. https://doi.org/10.1093/mnras/stw001.

[46] Valli, R., Tiede, C., Vigna-Gómez, A., Cuadra, J., Siwek, M., Ma, J.-Z., D’Orazio, D. J., Zrake, J., and de Mink, S. E. (2024) Long-term evolution of binary orbits induced by circumbinary disks. A&A, 688, A128. https://doi.org/10.1051/0004-6361/202449421.

[47] Vlasis, A., Dessart, L., and Audit, E. (2016) Two-dimensional radiation hydrodynamics simulations of superluminous interacting supernovae of Type IIn. MNRAS, 458(2), 1253–1266. https://doi.org/10.1093/mnras/stw410.

[48] Suzuki, A., Moriya, T. J., and Takiwaki, T. (2019) Supernova ejecta interacting with a circumstellar disk. I. Two-dimensional radiation–hydrodynamic simulations. ApJ, 887(2), 249. https://doi.org/10.3847/1538-4357/ab5a83.

[49] Mauerhan, J., Williams, G. G., Smith, N., Smith, P. S., Filippenko, A. V., Hoffman, J. L., Milne, P., Leonard, D. C., Clubb, K. I., Fox, O. D., and Kelly, P. L. (2014) Multi-epoch spectropolarimetry of SN 2009ip: direct evidence for aspherical circumstellar material. MNRAS, 442(2), 1166–1180. https://doi.org/10.1093/mnras/stu730.

Para citar este artículo

Andrea Ercolino, «Interacting Supernovae from Wide Mass-transferring Binaries», Bulletin de la Société Royale des Sciences de Liège [En ligne], Volume 93 - Année 2024, No 3 - 41st Liège International Astrophysical Colloquium, 193-205 URL : https://popups.uliege.be/0037-9565/index.php?id=12312.

Acerca de: Andrea Ercolino

Argelander Institut für Astronomie, Auf dem Hügel 71, D–53121 Bonn, Germany
email : aercolino@astro.uni-bonn.de