- Accueil
- Volume 93 - Année 2024
- No 3 - 41st Liège International Astrophysical Coll...
- Post-supernova Binary Interactions
Visualisation(s): 15 (0 ULiège)
Téléchargement(s): 0 (0 ULiège)
Post-supernova Binary Interactions
Document(s) associé(s)
Version PDF originaleAbstract
Binary evolution plays a key role in determining the properties of supernova progenitors, while supernova explosions can also significantly impact the evolution of the binary. In this paper I discuss several forms of binary interactions that happen immediately after supernova explosions and their observational consequences. I first discuss energy deposition into the companion envelope through ejecta–companion interaction, that can cause the star to temporarily inflate and become overluminous. I show that we can use this to constrain pre-supernova binary properties if we observe the inflated state of these companions and their later deflation. I then discuss direct collisions between new-born neutron stars and companion stars. Depending on the kick velocity and impact parameter, the neutron star can sometimes penetrate the companion envelope and capture part of the material, causing multiple bumps in the light curve through accretion feedback. I then briefly discuss how to combine these two studies to explain the undulations in the recently discovered SN2022jli.
This work is distributed under the Creative Commons CC BY 4.0 Licence.
Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.
Bibliographie
[1] Podsiadlowski, Ph., Joss, P. C., and Hsu, J. J. L. (1992) Presupernova evolution in massive interacting binaries. ApJ, 391, 246. https://doi.org/10.1086/171341.
[2] Maund, J. R., Smartt, S. J., Kudritzki, R. P., Podsiadlowski, Ph., and Gilmore, G. F. (2004) The massive binary companion star to the progenitor of supernova 1993J. Natur, 427, 129–131. https://doi.org/10.1038/nature02161.
[3] Fox, O. D., Azalee Bostroem, K., Van Dyk, S. D., Filippenko, A. V., Fransson, C., Matheson, T., Bradley Cenko, S., Chandra, P., Dwarkadas, V., Li, W., Parker, A. H., and Smith, N. (2014) Uncovering the putative B-star binary companion of the SN 1993J progenitor. ApJ, 790(1), 17. https://doi.org/10.1088/0004-637X/790/1/17.
[4] Ryder, S. D., Dyk, S. D. V., Fox, O. D., Zapartas, E., Mink, S. E. d., Smith, N., Brunsden, E., Bostroem, K. A., Filippenko, A. V., Shivvers, I., and Zheng, W. (2018) Ultraviolet detection of the binary companion to the Type IIb SN 2001ig. ApJ, 856(1), 83. https://doi.org/10.3847/1538-4357/aaaf1e.
[5] Maund, J. R., Pastorello, A., Mattila, S., Itagaki, K., and Boles, T. (2016) The possible detection of a binary companion to a Type Ibn supernova progenitor. ApJ, 833(2), 128. https://doi.org/10.3847/1538-4357/833/2/128.
[6] Sun, N.-C., Maund, J. R., Hirai, R., Crowther, P. A., and Podsiadlowski, Ph. (2020) Origins of Type Ibn SNe 2006jc/2015G in interacting binaries and implications for pre-SN eruptions. MNRAS, 491(4), 6000–6019. https://doi.org/10.1093/mnras/stz3431.
[7] Maund, J. R. (2019) The origin of the late-time luminosity of supernova 2011dh. ApJ, 883(1), 86. https://doi.org/10.3847/1538-4357/ab2386.
[8] Fox, O. D., Van Dyk, S. D., Williams, B. F., Drout, M., Zapartas, E., Smith, N., Milisavljevic, D., Andrews, J. E., Bostroem, K. A., Filippenko, A. V., Gomez, S., Kelly, P. L., de Mink, S. E., Pierel, J., Rest, A., Ryder, S., Sravan, N., Strolger, L., Wang, Q., and Weil, K. E. (2022) The candidate progenitor companion star of the Type Ib/c SN 2013ge. ApJL, 929(1), L15. https://doi.org/10.3847/2041-8213/ac5890.
[9] Krause, O., Birkmann, S. M., Usuda, T., Hattori, T., Goto, M., Rieke, G. H., and Misselt, K. A. (2008) The Cassiopeia A supernova was of Type IIb. Sci, 320, 1195–1197. https://doi.org/10.1126/science.1155788.
[10] Kochanek, C. S. (2018) Cas A and the Crab were not stellar binaries at death. MNRAS, 473(2), 1633–1643. https://doi.org/10.1093/mnras/stx2423.
[11] Kerzendorf, W. E., Do, T., de Mink, S. E., Götberg, Y., Milisavljevic, D., Zapartas, E., Renzo, M., Justham, S., Podsiadlowski, Ph., and Fesen, R. A. (2019) No surviving non-compact stellar companion to Cassiopeia A. A&A, 623, A34. https://doi.org/10.1051/0004-6361/201732206.
[12] Hirai, R., Sato, T., Podsiadlowski, Ph., Vigna-Gómez, A., and Mandel, I. (2020) Formation pathway for lonely stripped-envelope supernova progenitors: implications for Cassiopeia A. MNRAS, 499(1), 1154–1171. https://doi.org/10.1093/mnras/staa2898.
[13] Lyman, J. D., Bersier, D., James, P. A., Mazzali, P. A., Eldridge, J. J., Fraser, M., and Pian, E. (2016) Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae. MNRAS, 457(1), 328–350. https://doi.org/10.1093/mnras/stv2983.
[14] Taddia, F., Stritzinger, M. D., Bersten, M., Baron, E., Burns, C., Contreras, C., Holmbo, S., Hsiao, E. Y., Morrell, N., Phillips, M. M., Sollerman, J., and Suntzeff, N. B. (2018) The carnegie supernova project i: Analysis of stripped-envelope supernova light curves. A&A, 609, A136. https://doi.org/10.1051/0004-6361/201730844.
[15] Zapartas, E., Mink, S. E. d., Dyk, S. D. V., Fox, O. D., Smith, N., Bostroem, K. A., de Koter, A., Filippenko, A. V., Izzard, R. G., Kelly, P. L., Neijssel, C. J., Renzo, M., and Ryder, S. (2017) Predicting the presence of companions for stripped-envelope supernovae: The case of the broad-lined Type Ic SN 2002ap. ApJ, 842(2), 125. https://doi.org/10.3847/1538-4357/aa7467.
[16] Hirai, R. (2023) Constraining mass-transfer and common-envelope physics with post-supernova companion monitoring. MNRAS, 523, 6011–6019. https://doi.org/10.1093/mnras/stad1856.
[17] Sun, N.-C., Maund, J. R., and Crowther, P. A. (2023) A UV census of the environments of stripped-envelope supernovae. MNRAS, 521(2), 2860–2873. https://doi.org/10.1093/mnras/stad690.
[18] Kasen, D. (2010) Seeing the collision of a supernova with its companion star. ApJ, 708(2), 1025–1031. https://doi.org/10.1088/0004-637X/708/2/1025.
[19] Hirai, R., Podsiadlowski, Ph., and Yamada, S. (2018) Comprehensive study of ejecta-companion interaction for core-collapse supernovae in massive binaries. ApJ, 864(2), 119. https://doi.org/10.3847/1538-4357/aad6a0.
[20] Ogata, M., Hirai, R., and Hijikawa, K. (2021) Observability of inflated companion stars after supernovae in massive binaries. MNRAS, 505(2), 2485–2499. https://doi.org/10.1093/mnras/stab1439.
[21] Hirai, R. and Yamada, S. (2015) Possible signatures of ejecta-companion interaction in iPTF 13bvn. ApJ, 805(2), 170. https://doi.org/10.1088/0004-637X/805/2/170.
[22] Hirai, R., Nagakura, H., Okawa, H., and Fujisawa, K. (2016) Hyperbolic self-gravity solver for large scale hydrodynamical simulations. PhRvD, 93(8), 083006. https://doi.org/10.1103/PhysRevD.93.083006.
[23] Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., and Timmes, F. (2011) Modules for Experiments in Stellar Astrophysics (MESA). ApJS, 192(1), 3. https://doi.org/10.1088/0067-0049/192/1/3.
[24] Paxton, B., Cantiello, M., Arras, P., Bildsten, L., Brown, E. F., Dotter, A., Mankovich, C., Montgomery, M. H., Stello, D., Timmes, F. X., and Townsend, R. (2013) Modules for Experiments in Stellar Astrophysics (MESA): Planets, oscillations, rotation, and massive stars. ApJS, 208(1), 4. https://doi.org/10.1088/0067-0049/208/1/4.
[25] Paxton, B., Marchant, P., Schwab, J., Bauer, E. B., Bildsten, L., Cantiello, M., Dessart, L., Farmer, R., Hu, H., Langer, N., Townsend, R. H. D., Townsley, D. M., and Timmes, F. X. (2015) Modules for Experiments in Stellar Astrophysics (MESA): Binaries, pulsations, and explosions. ApJS, 220(1), 15. https://doi.org/10.1088/0067-0049/220/1/15.
[26] Hirai, R. and Mandel, I. (2022) A two-stage formalism for common-envelope phases of massive stars. ApJL, 937(2), L42. https://doi.org/10.3847/2041-8213/ac9519.
[27] Thorne, K. S. and Żytkow, A. N. (1975) Red giants and supergiants with degenerate neutron cores. ApJL, 199, L19–L24. https://doi.org/10.1086/181839.
[28] Thorne, K. S. and Żytkow, A. N. (1977) Stars with degenerate neutron cores. I. Structure of equilibrium models. ApJ, 212, 832–858. https://doi.org/10.1086/155109.
[29] Hirai, R., Podsiadlowski, Ph., Owocki, S. P., Schneider, F. R. N., and Smith, N. (2021) Simulating the formation of η Carinae’s surrounding nebula through unstable triple evolution and stellar merger-induced eruption. MNRAS, 503(3), 4276–4296. https://doi.org/10.1093/mnras/stab571.
[30] Hirai, R. and Podsiadlowski, Ph. (2022) Neutron stars colliding with binary companions: formation of hypervelocity stars, pulsar planets, bumpy superluminous supernovae and Thorne–Żytkow objects. MNRAS, 517(3), 4544–4556. https://doi.org/10.1093/mnras/stac3007.
[31] Brown, W. R. (2015) Hypervelocity stars. ARA&A, 53, 15–49. https://doi.org/10.1146/annurev-astro-082214-122230.
[32] Tauris, T. M. (2015) Maximum speed of hypervelocity stars ejected from binaries. MNRAS, 448(1), L6–L10. https://doi.org/10.1093/mnrasl/slu189.
[33] Irrgang, A., Kreuzer, S., and Heber, U. (2018) Hypervelocity stars in the Gaia era: Runaway B stars beyond the velocity limit of classical ejection mechanisms. A&A, 620, A48. https://doi.org/10.1051/0004-6361/201833874.
[34] Irrgang, A., Geier, S., Heber, U., Kupfer, T., and Fürst, F. (2019) PG 1610+062: a runaway B star challenging classical ejection mechanisms. A&A, 628, L5. https://doi.org/10.1051/0004-6361/201935429.
[35] Moore, T., Smartt, S. J., Nicholl, M., Srivastav, S., Stevance, H. F., Jess, D. B., Grant, S. D. T., Fulton, M. D., Rhodes, L., Sim, S. A., Hirai, R., Podsiadlowski, Ph., Anderson, J. P., Ashall, C., Bate, W., Fender, R., Gutiérrez, C. P., Howell, D. A., Huber, M. E., Inserra, C., Leloudas, G., Monard, L. A. G., Müller-Bravo, T. E., Shappee, B. J., Smith, K. W., Terreran, G., Tonry, J., Tucker, M. A., Young, D. R., Aamer, A., Chen, T.-W., Ragosta, F., Galbany, L., Gromadzki, M., Harvey, L., Hoeflich, P., McCully, C., Newsome, M., Gonzalez, E. P., Pellegrino, C., Ramsden, P., Pérez-Torres, M., Ridley, E. J., Sheng, X., and Weston, J. (2023) SN 2022jli: A Type Ic supernova with periodic modulation of its light curve and an unusually long rise. ApJL, 956(1), L31. https://doi.org/10.3847/2041-8213/acfc25.
[36] Chen, P., Gal-Yam, A., Sollerman, J., Schulze, S., Post, R. S., Liu, C., Ofek, E. O., Das, K. K., Fremling, C., Horesh, A., Katz, B., Kushnir, D., Kasliwal, M. M., Kulkarni, S. R., Liu, D., Liu, X., Miller, A. A., Rose, K., Waxman, E., Yang, S., Yao, Y., Zackay, B., Bellm, E. C., Dekany, R., Drake, A. J., Fang, Y., Fynbo, J. P. U., Groom, S. L., Helou, G., Irani, I., Jegou du Laz, T., Liu, X., Mazzali, P. A., Neill, J. D., Qin, Y.-J., Riddle, R. L., Sharon, A., Strotjohann, N. L., Wold, A., and Yan, L. (2024) A 12.4-day periodicity in a close binary system after a supernova. Natur, 625, 253–258. https://doi.org/10.1038/s41586-023-06787-x.
Pour citer cet article
A propos de : Ryosuke Hirai
School of Physics and Astronomy, Monash University, Clayton, VIC3800, Australia
OzGrav: The ARC Centre of Excellence for Gravitational Wave Discovery, Clayton VIC 3800, Australia
email : ryosuke.hirai@riken.jp