ya que 05 febrero 2011 :
Vista(s): 16 (3 ULiège)
Descargar(s): 0 (0 ULiège)
print        
Daniel Pauli

Charting New Pathways to Form Wolf–Rayet Stars at Low Metallicities

(Volume 93 - Année 2024 — No 3 - 41st Liège International Astrophysical Colloquium)
Article
Open Access

Documento adjunto(s)

Version PDF originale

Abstract

Low-metallicity Wolf–Rayet (WR) populations, such as the one of the Small Magellanic Cloud (SMC), are expected to be slightly influenced by metallicity-dependent effects, such as envelope inflation, which typically positions stars at cooler temperatures. Consequently, these populations should be easier to understand from a theoretical point of view. Yet, the observed bimodal temperature distribution of WR stars in the SMC cannot be explained by existing single-star or binary evolution models. To better understand the observed temperature distribution of WR stars in the SMC, the role of the evolutionary secondary and its response to mass transfer is studied here in detail. To achieve this, I calculated a small grid of binary evolution models at the SMC metallicity, that follows the evolution of both the primary and secondary stars in detail. The analysis of the new binary evolution models suggests that hot (T ≈ 100 kK), hydrogen-poor WN-type stars are the descendants of “ordinary” primary stars or secondaries that have accreted less than a few percent of their initial mass. In contrast, moderate-temperature (T ≈ 50 kK) WN stars can emerge through two channels: (i) as former accretors that underwent rejuvenation, altering their interior structure and leading to higher surface oxygen abundances (XO = 20×10−5) after mass-transfer, or (ii) as luminous stars experiencing envelope inflation, that exhibit surface oxygen abundances in accordance with the CNO-equilibrium value (XO = 2×10−5). The first observational evidence supporting this hypothesis comes from the WR star SMC AB 4, whose optical spectra can only be explained with a stellar atmosphere model having a surface oxygen abundance one order of magnitude higher than the CNO-equilibrium value. Following the binary evolution models, secondary stars that have accreted mass relatively conservatively and, thus, got rejuvenated will evolve at low metallicity into WN stars with moderate temperatures and should be accompanied by a compact object. This would imply that the WN-type star SMC AB 4 should have a so far unseen compact companion. Future spectroscopic surveys focusing on surface oxygen abundances and multiplicity among SMC WR stars are key to further understanding massive star evolution and the role of binarity in forming WR stars in low-metallicity environments.

Keywords : stars: massive, stars: Wolf-Rayet, stars: evolution, binaries: close, Magellanic

1 

This work is distributed under the Creative Commons CC BY 4.0 Licence.

Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.

Bibliographie

Aguilera-Dena, D. R., Langer, N., Antoniadis, J., and Müller, B. (2020) Precollapse properties of superluminous supernovae and long gamma-ray burst progenitor model. ApJ, 901(2), 114. https://doi.org/10.3847/1538-4357/abb138.

Aguilera-Dena, D. R., Langer, N., Antoniadis, J., Pauli, D., Dessart, L., Vigna-Gómez, A., Gräfener, G., and Yoon, S.-C. (2022) Stripped-envelope stars in different metallicity environments. I. Evolutionary phases, classification, and populations. A&A, 661, A60. https://doi.org/10.1051/0004-6361/202142895.

Asplund, M., Grevesse, N., Sauval, A. J., and Scott, P. (2009) The chemical composition of the Sun. ARA&A, 47, 481–522. https://doi.org/10.1146/annurev.astro.46.060407.145222.

Böhm-Vitense, E. (1958) Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. ZAp, 46, 108–143. https://ui.adsabs.harvard.edu/abs/1958ZA.....46..108B.

Brott, I., de Mink, S. E., Cantiello, M., Langer, N., de Koter, A., Evans, C. J., Hunter, I., Trundle, C., and Vink, J. S. (2011) Rotating massive main-sequence stars: I. Grids of evolutionary models and isochrones. A&A, 530, A115. https://doi.org/10.1051/0004-6361/201016113.

Castor, J. I., Abbott, D. C., and Klein, R. I. (1975) Radiation-driven winds in Of stars. ApJ, 195(1), 157–174. https://doi.org/10.1086/153315.

Conti, P. S. (1976) On the relationship between Of and WR stars. MSRSL, 9, 193–212.

Crowther, P. A. (2007) Physical properties of Wolf–Rayet stars. ARA&A, 45, 177–219. https://doi.org/10.1146/annurev.astro.45.051806.110615.

Dessart, L., Hillier, D. J., Livne, E., Yoon, S.-C., Woosley, S., Waldman, R., and Langer, N. (2011) Core-collapse explosions of Wolf–Rayet stars and the connection to Type IIb/Ib/Ic supernovae. MNRAS, 414(4), 2985–3005. https://doi.org/10.1111/j.1365-2966.2011.18598.x.

Dray, L. M., Tout, C. A., Karakas, A. I., and Lattanzio, J. C. (2003) Chemical enrichment by Wolf–Rayet and asymptotic giant branch stars. MNRAS, 338(4), 973–989. https://doi.org/10.1046/j.1365-8711.2003.06142.x.

Gräfener, G., Koesterke, L., and Hamann, W.-R. (2002) Line-blanketed model atmospheres for WR stars. A&A, 387(1), 244–257. https://doi.org/10.1051/0004-6361:20020269.

Gräfener, G., Owocki, S. P., and Vink, J. S. (2012) Stellar envelope inflation near the Eddington limit. ımplications for the radii of Wolf–Rayet stars and luminous blue variables. A&A, 538, A40. https://doi.org/10.1051/0004-6361/201117497.

Groh, J. H., Meynet, G., and Ekström, S. (2013) Massive star evolution: luminous blue variables as unexpected supernova progenitors. A&A, 550, L7. https://doi.org/10.1051/0004-6361/201220741.

Hainich, R., Pasemann, D., Todt, H., Shenar, T., Sander, A., and Hamann, W.-R. (2015) Wolf–Rayet stars in the Small Magellanic Cloud. I. Analysis of the single WN stars. A&A, 581, A21. https://doi.org/10.1051/0004-6361/201526241.

Hamann, W.-R. and Gräfener, G. (2003) A temperature correction method for expanding atmospheres. A&A, 410(3), 993–1000. https://doi.org/10.1051/0004-6361:20031308.

Hamann, W.-R. and Gräfener, G. (2004) Grids of model spectra for WN stars, ready for use. A&A, 427(2), 697–704. https://doi.org/10.1051/0004-6361:20040506.

Heger, A., Langer, N., and Woosley, S. E. (2000) Presupernova evolution of rotating massive stars. I. Numerical method and evolution of the internal stellar structure. ApJ, 528(1), 368–396. https://doi.org/10.1086/308158.

Hunter, I., Dufton, P. L., Smartt, S. J., Ryans, R. S. I., Evans, C. J., Lennon, D. J., Trundle, C., Hubeny, I., and Lanz, T. (2007) The VLT-FLAMES survey of massive stars: surface chemical compositions of B-type stars in the Magellanic Clouds. A&A, 466(1), 277–300. https://doi.org/10.1051/0004-6361:20066148.

Hurley, J. R., Tout, C. A., and Pols, O. R. (2002) Evolution of binary stars and the effect of tides on binary populations. MNRAS, 329(4), 897–928. https://doi.org/10.1046/j.1365-8711.2002.05038.x.

Inserra, C., Smartt, S. J., Jerkstrand, A., Valenti, S., Fraser, M., Wright, D., Smith, K., Chen, T.-W., Kotak, R., Pastorello, A., Nicholl, M., Bresolin, F., Kudritzki, R. P., Benetti, S., Botticella, M. T., Burgett, W. S., Chambers, K. C., Ergon, M., Flewelling, H., Fynbo, J. P. U., Geier, S., Hodapp, K. W., Howell, D. A., Huber, M., Kaiser, N., Leloudas, G., Magill, L., Magnier, E. A., McCrum, M. G., Metcalfe, N., Price, P. A., Rest, A., Sollerman, J., Sweeney, W., Taddia, F., Taubenberger, S., Tonry, J. L., Wainscoat, R. J., Waters, C., and Young, D. (2013) Super-Luminous Type Ic supernovae: Catching a magnetar by the tail. ApJ, 770(2), 128. https://doi.org/10.1088/0004-637X/770/2/128.

Kippenhahn, R., Ruschenplatt, G., and Thomas, H.-C. (1980) The time scale of thermohaline mixing in stars. A&A, 91(1-2), 175–180. https://ui.adsabs.harvard.edu/abs/1980A&A....91..175K.

Koenigsberger, G., Morrell, N., Hillier, D. J., Gamen, R., Schneider, F. R. N., González-Jiménez, N., Langer, N., and Barbá, R. (2014) The HD 5980 multiple system: Masses and evolutionary status. AJ, 148(4), 62. https://doi.org/10.1088/0004-6256/148/4/62.

Kurt, C. M. and Dufour, R. J. (1998) The chemical composition of H II regions in the Magellanic Clouds: New calculations using modern atomic data. In The sixth Texas–Mexico conference on astrophysics: astrophysical plasmas – near and far, edited by Dufour, R. J. and Torres-Peimbert, S., RMxAA Conference Series, volume 7, pages 202–206. https://ui.adsabs.harvard.edu/abs/1998RMxAC...7..202K.

Langer, N., Fricke, K. J., and Sugimoto, D. (1983) Semiconvective diffusion and energy transport. A&A, 126(1), 207–208. https://ui.adsabs.harvard.edu/abs/1983A&A...126..207L.

Maeder, A. (1983) Evolution of chemical abundances in massive stars. I. OB stars, Hubble–Sandage variables and Wolf–Rayet stars. Changes at stellar surfaces and galactic enrichment by stellar winds. A&A, 120, 113–129. https://ui.adsabs.harvard.edu/abs/1983A&A...120..113M.

Nieuwenhuijzen, H. and de Jager, C. (1990) Parametrization of stellar rates of mass loss as functions of the fundamental stellar parameters M, L, and R. A&A, 231, 134–136. https://ui.adsabs.harvard.edu/abs/1990A&A...231..134N.

Paczyński, B. (1967) Evolution of close binaries. V. The evolution of massive binaries and the formation of the Wolf–Rayet stars. AcA, 17(4), 355–380. https://ui.adsabs.harvard.edu/abs/1967AcA....17..355P.

Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., and Timmes, F. (2011) Modules for Experiments in Stellar Astrophysics (MESA). ApJS, 192(1), 3. https://doi.org/10.1088/0067-0049/192/1/3.

Paxton, B., Cantiello, M., Arras, P., Bildsten, L., Brown, E. F., Dotter, A., Mankovich, C., Montgomery, M. H., Stello, D., Timmes, F. X., and Townsend, R. (2013) Modules for Experiments in Stellar Astrophysics (MESA): Planets, oscillations, rotation, and massive stars. ApJS, 208(1), 4. https://doi.org/10.1088/0067-0049/208/1/4.

Paxton, B., Marchant, P., Schwab, J., Bauer, E. B., Bildsten, L., Cantiello, M., Dessart, L., Farmer, R., Hu, H., Langer, N., Townsend, R. H. D., Townsley, D. M., and Timmes, F. X. (2015) Modules for Experiments in Stellar Astrophysics (MESA): Binaries, pulsations, and explosions. ApJS, 220(1), 15. https://doi.org/10.1088/0067-0049/220/1/15.

Paxton, B., Schwab, J., Bauer, E. B., Bildsten, L., Blinnikov, S., Duffell, P., Farmer, R., Goldberg, J. A., Marchant, P., Sorokina, E., Thoul, A., Townsend, R. H. D., and Timmes, F. X. (2018) Modules for Experiments in Stellar Astrophysics (MESA): Convective boundaries, element diffusion, and massive star explosions. ApJS, 234(2), 34. https://doi.org/10.3847/1538-4365/aaa5a8.

Paxton, B., Smolec, R., Schwab, J., Gautschy, A., Bildsten, L., Cantiello, M., Dotter, A., Farmer, R., Goldberg, J. A., Jermyn, A. S., Kanbur, S. M., Marchant, P., Thoul, A., Townsend, R. H. D., Wolf, W. M., Zhang, M., and Timmes, F. X. (2019) Modules for Experiments in Stellar Astrophysics (MESA): Pulsating variable stars, rotation, convective boundaries, and energy conservation. ApJS, 243(1), 10. https://doi.org/10.3847/1538-4365/ab2241.

Sander, A., Shenar, T., Hainich, R., Gímenez-García, A., Todt, H., and Hamann, W.-R. (2015) On the consistent treatment of the quasi-hydrostatic layers in hot star atmospheres. A&A, 577, A13. https://doi.org/10.1051/0004-6361/201425356.

Sanyal, D., Grassitelli, L., Langer, N., and Bestenlehner, J. M. (2015) Massive main-sequence stars evolving at the Eddington limit. A&A, 580, A20. https://doi.org/10.1051/0004-6361/201525945.

Schootemeijer, A., Langer, N., Grin, N. J., and Wang, C. (2019) Constraining mixing in massive stars in the Small Magellanic Cloud. A&A, 625, A132. https://doi.org/10.1051/0004-6361/201935046.

Shenar, T., Hainich, R., Todt, H., Moffat, A. F. J., Sander, A., Oskinova, L. M., Ramachandran, V., Munoz, M., Pablo, H., Sana, H., and Hamann, W.-R. (2018) The shortest-period Wolf–Rayet binary in the Small Magellanic Cloud: Part of a high-order multiple system. Spectral and orbital analysis of SMC AB 6. A&A, 616, A103. https://doi.org/10.1051/0004-6361/201833006.

Shenar, T., Hainich, R., Todt, H., Sander, A., Hamann, W.-R., Moffat, A. F. J., Eldridge, J. J., Pablo, H., Oskinova, L. M., and Richardson, N. D. (2016) Wolf–Rayet stars in the Small Magellanic Cloud. II. Analysis of the binaries. A&A, 591, A22. https://doi.org/10.1051/0004-6361/201527916.

Shenar, T., Sablowski, D. P., Hainich, R., Todt, H., Moffat, A. F. J., Oskinova, L. M., Ramachandran, V., Sana, H., Sander, A. A. C., Schnurr, O., St-Louis, N., Vanbeveren, D., Götberg, Y., and Hamann, W.-R. (2019) The Wolf–Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud. Spectroscopy, orbital analysis, formation, and evolution. A&A, 627, A151. https://doi.org/10.1051/0004-6361/201935684.

Shenar, T., Sablowski, D. P., Hainich, R., Todt, H., Moffat, A. F. J., Oskinova, L. M., Ramachandran, V., Sana, H., Sander, A. A. C., Schnurr, O., St-Louis, N., Vanbeveren, D., Götberg, Y., and Hamann, W.-R. (2020) The Wolf–Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud. Spectroscopy, orbital analysis, formation, and evolution (Corrigendum). A&A, 641, C2. https://doi.org/10.1051/0004-6361/201935684e.

Spruit, H. C. (2002) Dynamo action by differential rotation in a stably stratified stellar interior. A&A, 381(3), 923–932. https://doi.org/10.1051/0004-6361:20011465.

Todt, H., Kniazev, A. Y., Gvaramadze, V. V., Hamann, W.-R., Pena, M., Graefener, G., Buckley, D., Crause, L., Crawford, S. M., Gulbis, A. A. S., Hettlage, C., Hooper, E., Husser, T.-O., Kotze, P., Loaring, N., Nordsieck, K. H., O’Donoghue, D., Pickering, T., Potter, S., Romero-Colmenero, E., Vaisanen, P., Williams, T., and Wolf, M. (2015) Hydrogen–deficient central stars of planetary nebulae. In 19th European Workshop on White Dwarfs, edited by Dufour, P., Bergeron, P., and Fontaine, G., Astronomical Society of the Pacific Conference Series, volume 493, pages 539–543. https://www.aspbooks.org/a/volumes/article_details/?paper_id=37042.

Trundle, C., Dufton, P. L., Hunter, I., Evans, C. J., Lennon, D. J., Smartt, S. J., and Ryans, R. S. I. (2007) The VLT-FLAMES survey of massive stars: evolution of surface N abundances and effective temperature scales in the Galaxy and Magellanic Clouds. A&A, 471(2), 625–643. https://doi.org/10.1051/0004-6361:20077838.

Venn, K. A. (1999) A-Type supergiant abundances in the Small Magellanic Cloud: Probes of evolution. ApJ, 518(1), 405–421. https://doi.org/10.1086/307278.

Vink, J. S., de Koter, A., and Lamers, H. J. G. L. M. (2001) Mass-loss predictions for O and B stars as a function of metallicity. A&A, 369(2), 574–588. https://doi.org/10.1051/0004-6361:20010127.

Weaver, R., McCray, R., Castor, J., Shapiro, P., and Moore, R. (1977) Interstellar bubbles. II. Structure and evolution. ApJ, 218, 377–395. https://doi.org/10.1086/155692.

Para citar este artículo

Daniel Pauli, «Charting New Pathways to Form Wolf–Rayet Stars at Low Metallicities», Bulletin de la Société Royale des Sciences de Liège [En ligne], Volume 93 - Année 2024, No 3 - 41st Liège International Astrophysical Colloquium, 216-229 URL : https://popups.uliege.be/0037-9565/index.php?id=12319.

Acerca de: Daniel Pauli

Institut für Physik und Astronomie, Universität Potsdam, Germany
email : dpauli@astro.physik.uni-potsdam.de