- Startpagina tijdschrift
- Volume 93 - Année 2024
- No 3 - 41st Liège International Astrophysical Coll...
- X-ray Microcalorimeter Observations of High-mass X-ray Binaries with the Resolve Instrument Onboard XRISM
Weergave(s): 19 (0 ULiège)
Download(s): 0 (0 ULiège)
X-ray Microcalorimeter Observations of High-mass X-ray Binaries with the Resolve Instrument Onboard XRISM
Documenten bij dit artikel
Version PDF originaleRésumé
La mission XRISM (X-ray Imaging and Spectrometer Mission) a été mise en orbite avec succès en septembre 2023. Resolve, l’un des instruments scientifiques à bord de XRISM, héberge un spectromètre à rayons X utilisant la technologie de la microcalorimétrie. Il possède une très haute résolution spectrale, un débit important, une large bande passante, un faible bruit de fond ainsi qu’une très bonne précision temporelle. Ces propriétés nous permettent d’obtenir de nouvelles informations, en particulier pour ce qui concerne les binaires X à forte masse (HMXB). Nous décrivons ci-dessous les caractéristiques uniques de Resolve et présentons les premiers résultats de deux HMXBs.
Abstract
The X-ray Imaging and Spectrometer Mission (XRISM) was put into orbit successfully in September 2023. Resolve, one of the scientific instruments onboard XRISM, hosts an X-ray spectrometer based on X-ray microcalorimetery technology. It excels in high spectral resolution, a large throughput, a large bandpass, low background, and good timing accuracy. These properties are suited to bring new insights especially in high-mass X-ray binaries (HMXB). We describe these unique features of Resolve and present initial highlights of two HMXB sources.
This work is distributed under the Creative Commons CC BY 4.0 Licence.
Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.
Bibliographie
[1] Ishisaki, Y., Kelley, R. L., Awaki, H., Balleza, J. C., Barnstable, K. R., Bialas, T. G., Boissay-Malaquin, R., Brown, G. V., Canavan, E. R., Cumbee, R. S., and 56 more (2022) Status of resolve instrument onboard X-ray Imaging and Spectroscopy Mission (XRISM). In Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray, edited by den Herder, J.-W. A., Nakazawa, K., and Nikzad, S., volume 12181. SPIE. https://doi.org/10.1117/12.2630654.
[2] Tashiro, M. S., Watanabe, S., Maejima, H., Toda, K., Matsushita, K., Yamaguchi, H., Kelley, R. L., Reichenthal, L. S., Hartz, L. S., Petre, R., and 175 more (2024) Development and operation status of X-Ray Imaging and Spectroscopy Mission (XRISM). In Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray, edited by den Herder, J.-W. A., Nikzad, S., and Nakazawa, K., volume 13093. SPIE. https://doi.org/10.1117/12.3019325.
[3] Canizares, C., Davis, J., Dewey, D., Flanagan, K., Galton, E., Huenemoerder, D., Ishibashi, K., Markert, T., Marshall, H., McGuirk, M., Schattenburg, M., Schulz, N., Smith, H., and Wise, M. (2005) The Chandra high-energy transmission grating: Design, fabrication, ground calibration, and 5 years in flight. PASP, 117(836), 1144–1171. https://doi.org/10.1086/432898.
[4] Chodil, G., Mark, H., Rodrigues, R., Seward, F. D., and Swift, C. D. (1967) X-Ray intensities and spectra from several cosmic sources. ApJ, 150, 57–65. https://doi.org/10.1086/149312.
[5] Nagase, F., Zylstra, G., Sonobe, T., Kotani, T., Inoue, H., and Woo, J. (1994) Line-dominated eclipse spectrum of Vela X-1. ApJ, 436, L1–L4. https://doi.org/10.1086/187619.
[6] van Kerkwijk, M. H., van Paradijs, J., and Zuiderwijk, E. J. (1995) On the masses of neutron stars. A&A, 303, 497–501. https://ui.adsabs.harvard.edu/abs/1995A&A...303..497V.
[7] Watanabe, S., Sako, M., Ishida, M., Ishisaki, Y., Kahn, S. M., Kohmura, T., Nagase, F., Paerels, F., and Takahashi, T. (2006) X-Ray spectral study of the photoionized stellar wind in Vela X-1. ApJ, 651(1), 421–437. https://doi.org/10.1086/507458.
[8] Fürst, F., Kreykenbohm, I., Pottschmidt, K., Wilms, J., Hanke, M., Rothschild, R. E., Kretschmar, P., Schulz, N. S., Huenemoerder, D. P., Klochkov, D., and Staubert, R. (2010) X-ray variation statistics and wind clumping in Vela X-1. A&A, 519, A37. https://doi.org/10.1051/0004-6361/200913981.
[9] Doroshenko, V., Santangelo, A., Nakahira, S., Mihara, T., Sugizaki, M., Matsuoka, M., Nakajima, M., and Makishima, K. (2013) Footprints in the wind of Vela X-1 traced with MAXI. A&A, 554, A37. https://doi.org/10.1051/0004-6361/201321305.
[10] Kretschmar, P., El Mellah, I., Martínez-Núñez, S., Fürst, F., Grinberg, V., Sander, A. A. C., van den Eijnden, J., Degenaar, N., Maíz Apellániz, J., Jiménez Esteban, F., Ramos-Lerate, M., and Utrilla, E. (2021) Revisiting the archetypical wind accretor Vela X-1 in depth: Case study of a well-known X-ray binary and the limits of our knowledge. A&A, 652, A95. https://doi.org/10.1051/0004-6361/202040272.
[11] Amato, R., Grinberg, V., Hell, N., Bianchi, S., Pinto, C., D’Aí, A., Del Santo, M., Mineo, T., and Santangelo (2021) Looking through the photoionisation wake: Vela X-1 at ϕorb ≈ 0.75 with Chandra/HETG. A&A, 648, A105. https://doi.org/10.1051/0004-6361/202039125.
[12] Giacconi, R., Gursky, H., Kellogg, E., Schreier, E., and Tananbaum, H. (1971) Discovery of periodic X-ray pulsations in Centaurus X-3 from UHURU. ApJ, 167, L67–L73. https://doi.org/10.1086/180762.
[13] Schreier, E., Levinson, R., Gursky, H., Kellogg, E., Tananbaum, H., and Giacconi, R. (1972) Evidence for the binary nature of Centaurus X-3 from UHURU X-ray observations. ApJ, 172, L79–L89. https://doi.org/10.1086/180896.
[14] Iaria, R., Di Salvo, T., Robba, N. R., Burderi, L., Lavagetto, G., and Riggio, A. (2005) Resolving the Fe XXV triplet with Chandra in Centaurus X-3. ApJ, 634(2), L161–L164. https://doi.org/10.1086/499040.
[15] Tugay, A. V. and Vasylenko, A. A. (2009) XMM-Newton observations of X-ray pulsar Cen X-3. In Young Scientists 16th Proceedings, edited by Choliy, V. Y. and Ivashchenko, G., pages 58–61. https://doi.org/https://doi.org/10.48550/arXiv.0912.3354.
[16] Naik, S. and Paul, B. (2012) Investigation of variability of iron emission lines in Centaurus X-3. BASI, 40(4), 503–514. http://www.ncra.tifr.res.in:8081/~basi/12Dec/503402012.pdf.
[17] Aftab, N., Paul, B., and Kretschmar, P. (2019) X-ray reprocessing: Through the eclipse spectra of high-mass x-ray binaries with xmm-newton. ApJS, 243(2), 29. https://doi.org/10.3847/1538-4365/ab2a77.
[18] Sanjurjo-Ferrín, G., Torrejón, J. M., Postnov, K., Oskinova, L., Rodes-Roca, J. J., and Bernabeu, G. (2021) X-ray variability of the HMXB Cen X-3: evidence for inhomogeneous accretion flows. MNRAS, 501(4), 5892–5909. https://doi.org/10.1093/mnras/staa3953.
[19] Mochizuki, Y., Tsujimoto, M., Kelley, R. L., Vander Meulen, B., Enoto, T., Nagai, Y., Done, C., Pradhan, P., Hell, N., Pottschmidt, K., Ebisawa, K., and Behar, E. (2024) Detection of the orbital modulation of Fe Kα fluorescence emission in Centaurus X-3 using the high-resolution spectrometer Resolve on board XRISM. ApJL, 977(1), L21. https://doi.org/10.3847/2041-8213/ad946d.
Om dit artikel te citeren:
Over : Pragati Pradhan
email : pradhanp@erau.edu
Over : Masahiro Tsujimoto
email : tsujimoto.masahiro@jaxa.jp