- Portada
- Volume 93 - Année 2024
- No 3 - 41st Liège International Astrophysical Coll...
- Theoretical Expectations for High-mass X-ray Binaries, Supernova Remnants, and their Evolutionary Paths: A Review for LIAC41: the Eventful Life of Stellar Multiples
Vista(s): 15 (0 ULiège)
Descargar(s): 0 (0 ULiège)
Theoretical Expectations for High-mass X-ray Binaries, Supernova Remnants, and their Evolutionary Paths: A Review for LIAC41: the Eventful Life of Stellar Multiples
Documento adjunto(s)
Version PDF originaleAbstract
In this invited talk at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” I reviewed some aspects of our current understanding of neutron stars and black holes as end products of stellar evolution as well as the evolutionary paths leading to the formation of high-mass X-ray binaries.
This work is distributed under the Creative Commons CC BY 4.0 Licence.
Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.
Bibliographie
Abbott, R., Abbott, T. D., Abraham, S., Acernese, F., Ackley, K., Adams, C., Adhikari, R. X., Adya, V. B., Affeldt, C., Agathos, M., and 1245 more (LIGO Scientific Collaboration, and Virgo Collaboration) (2020) GW190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. ApJL, 896(2), L44. https://doi.org/10.3847/2041-8213/ab960f.
Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., Adhikari, N., Adhikari, R. X., Adya, V. B., Affeldt, C., Agarwal, D., and 1648 more (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration) (2023) GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. PhRvX, 13(4), 041039. https://doi.org/10.1103/PhysRevX.13.041039.
Adams, S. M., Kochanek, C. S., Gerke, J. R., Stanek, K. Z., and Dai, X. (2017) The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star. MNRAS, 468(4), 4968–4981. https://doi.org/10.1093/mnras/stx816.
Andrews, J. J. and Mandel, I. (2019) Double neutron star populations and formation channels. ApJL, 880(1), L8. https://doi.org/10.3847/2041-8213/ab2ed1.
Antoni, A. and Quataert, E. (2022) Numerical simulations of the random angular momentum in convection: Implications for supergiant collapse to form black holes. MNRAS, 511(1), 176–197. https://doi.org/10.1093/mnras/stab3776.
Atri, P., Miller-Jones, J. C. A., Bahramian, A., Plotkin, R. M., Jonker, P. G., Nelemans, G., Maccarone, T. J., Sivakoff, G. R., Deller, A. T., Chaty, S., Torres, M. A. P., Horiuchi, S., McCallum, J., Natusch, T., Phillips, C. J., Stevens, J., and Weston, S. (2019) Potential kick velocity distribution of black hole X-ray binaries and implications for natal kicks. MNRAS, 489(3), 3116–3134. https://doi.org/10.1093/mnras/stz2335.
Blaauw, A. (1961) On the origin of the O- and B-type stars with high velocities (the “run-away” stars), and some related problems. BAN, 15, 265–290. https://ui.adsabs.harvard.edu/abs/1961BAN....15..265B.
Blondin, J. M. and Mezzacappa, A. (2007) Pulsar spins from an instability in the accretion shock of supernovae. Natur, 445, 58–60. https://doi.org/10.1038/nature05428.
Breton, R. P., Kaspi, V. M., Kramer, M., McLaughlin, M. A., Lyutikov, M., Ransom, S. M., Stairs, I. H., Ferdman, R. D., Camilo, F., and Possenti, A. (2008) Relativistic spin precession in the double pulsar. Sci, 321, 104–107. https://doi.org/10.1126/science.1159295.
Burrows, A., Radice, D., Vartanyan, D., Nagakura, H., Skinner, M. A., and Dolence, J. C. (2020) The overarching framework of core-collapse supernova explosions as revealed by 3D FORNAX simulations. MNRAS, 491(2), 2715–2735. https://doi.org/10.1093/mnras/stz3223.
Burrows, A., Wang, T., and Vartanyan, D. (2024a) Physical correlations and predictions emerging from modern core-collapse supernova theory. ApJL, 964(1), L16. https://doi.org/10.3847/2041-8213/ad319e.
Burrows, A., Wang, T., Vartanyan, D., and Coleman, M. S. B. (2024b) A theory for neutron star and black hole kicks and induced spins. ApJ, 963(1), 63. https://doi.org/10.3847/1538-4357/ad2353.
Deller, A. T., Goss, W. M., Brisken, W. F., Chatterjee, S., Cordes, J. M., Janssen, G. H., Kovalev, Y. Y., Lazio, T. J. W., Petrov, L., Stappers, B. W., and Lyne, A. (2019) Microarcsecond VLBI pulsar astrometry with psrπ II. Parallax distances for 57 pulsars. ApJ, 875(2), 100. https://doi.org/10.3847/1538-4357/ab11c7.
El-Badry, K., Rix, H.-W., Cendes, Y., Rodriguez, A. C., Conroy, C., Quataert, E., Hawkins, K., Zari, E., Hobson, M., Breivik, K., Rau, A., Berger, E., Shahaf, S., Seeburger, R., Burdge, K. B., Latham, D. W., Buchhave, L. A., Bieryla, A., Bashi, D., Mazeh, T., and Faigler, S. (2023a) A red giant orbiting a black hole. MNRAS, 521(3), 4323–4348. https://doi.org/10.1093/mnras/stad799.
El-Badry, K., Rix, H.-W., Quataert, E., Howard, A. W., Isaacson, H., Fuller, J., Hawkins, K., Breivik, K., Wong, K. W. K., Rodriguez, A. C., Conroy, C., Shahaf, S., Mazeh, T., Arenou, F., Burdge, K. B., Bashi, D., Faigler, S., Weisz, D. R., Seeburger, R., Almada Monter, S., and Wojno, J. (2023b) A Sun-like star orbiting a black hole. MNRAS, 518(1), 1057–1085. https://doi.org/10.1093/mnras/stac3140.
Ertl, T., Janka, H.-T., Woosley, S. E., Sukhbold, T., and Ugliano, M. (2016) A two-parameter criterion for classifying the explodability of massive stars by the neutrino-driven mechanism. ApJ, 818(2), 124. https://doi.org/10.3847/0004-637X/818/2/124.
Ertl, T., Woosley, S. E., Sukhbold, T., and Janka, H.-T. (2020) The explosion of helium stars evolved with mass loss. ApJ, 890(1), 51. https://doi.org/10.3847/1538-4357/ab6458.
Farr, W. M., Kremer, K., Lyutikov, M., and Kalogera, V. (2011) Spin tilts in the double pulsar reveal supernova spin angular-momentum production. ApJ, 742(2), 81. https://doi.org/10.1088/0004-637X/742/2/81.
Fishbach, M. and Kalogera, V. (2022) Apples and oranges: Comparing black holes in X-ray binaries and gravitational-wave sources. ApJL, 929(2), L26. https://doi.org/10.3847/2041-8213/ac64a5.
Fragos, T. and McClintock, J. E. (2015) The origin of black hole spin in Galactic low-mass X-ray binaries. ApJ, 800(1), 17. https://doi.org/10.1088/0004-637X/800/1/17.
Fragos, T., Willems, B., Kalogera, V., Ivanova, N., Rockefeller, G., Fryer, C. L., and Young, P. A. (2009) Understanding compact object formation and natal kicks. II. The case of XTE J1118 + 480. ApJ, 697(2), 1057–1070. https://doi.org/10.1088/0004-637X/697/2/1057.
Fryer, C. L., Belczynski, K., Wiktorowicz, G., Dominik, M., Kalogera, V., and Holz, D. E. (2012) Compact remnant mass function: Dependence on the explosion mechanism and metallicity. ApJ, 749(1), 91. https://doi.org/10.1088/0004-637X/749/1/91.
Gaia Collaboration: Panuzzo, P., Mazeh, T., Arenou, F., Holl, B., Caffau, E., Jorissen, A., Babusiaux, C., Gavras, P., Sahlmann, J., Bastian, U., and 405 more (2024) Discovery of a dormant 33 solar-mass black hole in pre-release Gaia astrometry. A&A, 686, L2. https://doi.org/10.1051/0004-6361/202449763.
Galaudage, S., Talbot, C., Nagar, T., Jain, D., Thrane, E., and Mandel, I. (2021) Building better spin models for merging binary black holes: Evidence for nonspinning and rapidly spinning nearly aligned subpopulations. ApJL, 921(1), L15. https://doi.org/10.3847/2041-8213/ac2f3c.
Gallegos-Garcia, M., Fishbach, M., Kalogera, V., L Berry, C. P., and Doctor, Z. (2022) Do high-spin high-mass X-ray binaries contribute to the population of merging binary black holes? ApJL, 938(2), L19. https://doi.org/10.3847/2041-8213/ac96ef.
Hannam, M., Hoy, C., Thompson, J. E., Fairhurst, S., Raymond, V., Colleoni, M., Davis, D., Estellés, H., Haster, C.-J., Helmling-Cornell, A., Husa, S., Keitel, D., Massinger, T. J., Menéndez-Vázquez, A., Mogushi, K., Ossokine, S., Payne, E., Pratten, G., Romero-Shaw, I., Sadiq, J., Schmidt, P., Tenorio, R., Udall, R., Veitch, J., Williams, D., Yelikar, A. B., and Zimmerman, A. (2022) General-relativistic precession in a black-hole binary. Natur, 610, 652–655. https://doi.org/10.1038/s41586-022-05212-z.
Heger, A., Müller, B., and Mandel, I. (2023) Black holes as the end state of stellar evolution: Theory and simulations. In The Encyclopedia of Cosmology. Set 2: Frontiers in Cosmology. Volume 3: Black Holes, edited by Haiman, Z., World Scientific Series in Astrophysics, chapter 3, pages 61–111. World Scientific. https://doi.org/10.1142/9789811282676_0003.
Heger, A. and Woosley, S. E. (2002) The nucleosynthetic signature of population III. ApJ, 567(1), 532–543. https://doi.org/10.1086/338487.
Hirai, R. and Mandel, I. (2021) Conditions for accretion disc formation and observability of wind-accreting X-ray binaries. PASA, 38, e056. https://doi.org/10.1017/pasa.2021.53.
Hirai, R. and Mandel, I. (2022) A two-stage formalism for common-envelope phases of massive stars. ApJL, 937(2), L42. https://doi.org/10.3847/2041-8213/ac9519.
Hobbs, G., Lorimer, D. R., Lyne, A. G., and Kramer, M. (2005) A statistical study of 233 pulsar proper motions. MNRAS, 360(3), 974–992. https://doi.org/10.1111/j.1365-2966.2005.09087.x.
Hoy, C., Fairhurst, S., and Mandel, I. (2024) Precession and higher order multipoles in binary black holes (and lack thereof). arXiv e-prints: arXiv:2408.03410. https://doi.org/10.48550/arXiv.2408.03410.
Hurley, J. R., Tout, C. A., and Pols, O. R. (2002) Evolution of binary stars and the effect of tides on binary populations. MNRAS, 329(4), 897–928. https://doi.org/10.1046/j.1365-8711.2002.05038.x.
Igoshev, A. P. (2020) The observed velocity distribution of young pulsars – II. Analysis of complete PSRπ. MNRAS, 494(3), 3663–3674. https://doi.org/10.1093/mnras/staa958.
Illarionov, A. F. and Sunyaev, R. A. (1975) Why the number of Galactic X-ray stars is so small? A&A, 39, 185–195. https://ui.adsabs.harvard.edu/abs/1975A&A....39..185I.
Janka, H.-T. (2013) Natal kicks of stellar mass black holes by asymmetric mass ejection in fallback supernovae. MNRAS, 434(2), 1355–1361. https://doi.org/10.1093/mnras/stt1106.
Janka, H.-T., Langanke, K., Marek, A., Martínez-Pinedo, G., and Müller, B. (2007) Theory of core-collapse supernovae. PhR, 442(1-6), 38–74. https://doi.org/10.1016/j.physrep.2007.02.002.
Janka, H.-T., Wongwathanarat, A., and Kramer, M. (2022) Supernova fallback as origin of neutron star spins and spin-kick alignment. ApJ, 926(1), 9. https://doi.org/10.3847/1538-4357/ac403c.
Janka, H.-Th. and Kresse, D. (2024) Interplay between neutrino kicks and hydrodynamic kicks of neutron stars and black holes. Ap&SS, 369(8), 80. https://doi.org/10.1007/s10509-024-04343-1.
Johnston, S., Hobbs, G., Vigeland, S., Kramer, M., Weisberg, J. M., and Lyne, A. G. (2005) Evidence for alignment of the rotation and velocity vectors in pulsars. MNRAS, 364(4), 1397–1412. https://doi.org/10.1111/j.1365-2966.2005.09669.x.
Kapil, V., Mandel, I., Berti, E., and Müller, B. (2023) Calibration of neutron star natal kick velocities to isolated pulsar observations. MNRAS, 519(4), 5893–5901. https://doi.org/10.1093/mnras/stad019.
King, A. (2003) Black holes, galaxy formation, and the mbh-σ relation. ApJL, 596(1), L27–L29. https://doi.org/10.1086/379143.
King, A. R. and Kolb, U. (1999) The evolution of black hole mass and angular momentum. MNRAS, 305(3), 654–660. https://doi.org/10.1046/j.1365-8711.1999.02482.x.
Knigge, C., Coe, M. J., and Podsiadlowski, Ph. (2011) Two populations of X-ray pulsars produced by two types of supernova. Natur, 479, 372–375. https://doi.org/10.1038/nature10529.
Kushnir, D., Zaldarriaga, M., Kollmeier, J. A., and Waldman, R. (2016) GW150914: spin-based constraints on the merger time of the progenitor system. MNRAS, 462, 844–849. https://doi.org/10.1093/mnras/stw1684.
Lam, C. Y., Abrams, N., Andrews, J., Bachelet, E., Bahramian, A., Bennett, D., Bozza, V., Broekgaarden, F., Chakrabarti, S., Dawson, W., El-Badry, K., Fishbach, M., Fragione, G., Gaudi, S., Gautam, A., Hirai, R., Holz, D., Hosek, M., Huston, M., Jayasinghe, T., Johnson, S., Kawata, D., Koshimoto, N., Lu, J. R., Mandel, I., Miyazaki, S., Mróz, P., Naoz, S., Ranc, C., Rowan, D., Schödel, R., Shenar, T., Simon, J., Street, R., Sumi, T., Suzuki, D., and Terry, S. (2023) Roman CCS white paper: Characterizing the galactic population of isolated black holes. arXiv e-prints: arXiv:2306.12514. https://doi.org/10.48550/arXiv.2306.12514.
Lam, C. Y. and Lu, J. R. (2023) A reanalysis of the isolated black hole candidate OGLE-2011-BLG-0462/MOA-2011-BLG-191. ApJ, 955(2), 116. https://doi.org/10.3847/1538-4357/aced4a.
Lau, M. Y. M., Hirai, R., Mandel, I., and Tout, C. A. (2024) Expansion of accreting main-sequence stars during rapid mass transfer. ApJL, 966(1), L7. https://doi.org/10.3847/2041-8213/ad3d50.
Levine, A. M., Rappaport, S. A., and Zojcheski, G. (2000) Orbital decay in LMC X-4. ApJ, 541(1), 194–202. https://doi.org/10.1086/309398.
Liotine, C., Zevin, M., Berry, C. P. L., Doctor, Z., and Kalogera, V. (2023) The missing link between black holes in high-mass X-ray binaries and gravitational-wave sources: Observational selection effects. ApJ, 946(1), 4. https://doi.org/10.3847/1538-4357/acb8b2.
Liu, B., Sartorio, N. S., Izzard, R. G., and Fialkov, A. (2024) Population synthesis of Be X-ray binaries: metallicity dependence of total X-ray outputs. MNRAS, 527(3), 5023–5048. https://doi.org/10.1093/mnras/stad3475.
MacLeod, M. and Loeb, A. (2020) Pre-common-envelope mass loss from coalescing binary systems. ApJ, 895(1), 29. https://doi.org/10.3847/1538-4357/ab89b6.
Mandel, I. (2016) Estimates of black hole natal kick velocities from observations of low-mass X-ray binaries. MNRAS, 456(1), 578–581. https://doi.org/10.1093/mnras/stv2733.
Mandel, I. (2021) An accurate analytical fit to the gravitational-wave inspiral duration for eccentric binaries. RNAAS, 5(10), 223. https://doi.org/10.3847/2515-5172/ac2d35.
Mandel, I. and de Mink, S. E. (2016) Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries. MNRAS, 458(3), 2634–2647. https://doi.org/10.1093/mnras/stw379.
Mandel, I. and Fragos, T. (2020) An alternative interpretation of GW190412 as a binary black hole merger with a rapidly spinning secondary. ApJL, 895(2), L28. https://doi.org/10.3847/2041-8213/ab8e41.
Mandel, I. and Müller, B. (2020) Simple recipes for compact remnant masses and natal kicks. MNRAS, 499(3), 3214–3221. https://doi.org/10.1093/mnras/staa3043.
Marchant, P., Langer, N., Podsiadlowski, Ph., Tauris, T. M., and Moriya, T. J. (2016) A new route towards merging massive black holes. A&A, 588, A50. https://doi.org/10.1051/0004-6361/201628133.
Marchant, P., Podsiadlowski, Ph., and Mandel, I. (2024) An upper limit on the spins of merging binary black holes formed through isolated binary evolution. A&A, A339. https://doi.org/10.1051/0004-6361/202348190.
Miller, M. C. and Miller, J. M. (2015) The masses and spins of neutron stars and stellar-mass black holes. PhR, 548, 1–34. https://doi.org/10.1016/j.physrep.2014.09.003.
Müller, B. (2020) Hydrodynamics of core-collapse supernovae and their progenitors. LRCA, 6, 3. https://doi.org/10.1007/s41115-020-0008-5.
Müller, B. (2023) Fallback onto kicked neutron stars and its effect on spin-kick alignment. MNRAS, 526(2), 2880–2888. https://doi.org/10.1093/mnras/stad2881.
Müller, B., Heger, A., Liptai, D., and Cameron, J. B. (2016) A simple approach to the supernova progenitor-explosion connection. MNRAS, 460(1), 742–764. https://doi.org/10.1093/mnras/stw1083.
Murguia-Berthier, A., Batta, A., Janiuk, A., Ramirez-Ruiz, E., Mandel, I., Noble, S. C., and Everson, R. W. (2020) On the maximum stellar rotation to form a black hole without an accompanying luminous transient. ApJL, 901(2), L24. https://doi.org/10.3847/2041-8213/abb818.
Neijssel, C. J., Vinciguerra, S., Vigna-Gómez, A., Hirai, R., Miller-Jones, J. C. A., Bahramian, A., Maccarone, T. J., and Mandel, I. (2021) Wind mass-loss rates of stripped stars inferred from Cygnus X-1. ApJ, 908(2), 118. https://doi.org/10.3847/1538-4357/abde4a.
O’Connor, E. and Ott, C. D. (2011) Black hole formation in failing core-collapse supernovae. ApJ, 730(2), 70. https://doi.org/10.1088/0004-637X/730/2/70.
Özel, F., Psaltis, D., Narayan, R., and McClintock, J. E. (2010) The black hole mass distribution in the Galaxy. ApJ, 725(2), 1918–1927. https://doi.org/10.1088/0004-637X/725/2/1918.
Packet, W. (1981) On the spin-up of the mass accreting component in a close binary system. A&A, 102(1), 17–19. https://ui.adsabs.harvard.edu/abs/1981A&A...102...17P.
Payne, E., Hourihane, S., Golomb, J., Udall, R., Davis, D., and Chatziioannou, K. (2022) Curious case of GW200129: Interplay between spin-precession inference and data-quality issues. PhRvD, 106(10), 104017. https://doi.org/10.1103/PhysRevD.106.104017.
Podsiadlowski, Ph., Rappaport, S., and Han, Z. (2003) On the formation and evolution of black hole binaries. MNRAS, 341(2), 385–404. https://doi.org/10.1046/j.1365-8711.2003.06464.x.
Podsiadlowski, Ph., Rappaport, S., and Pfahl, E. D. (2002) Evolutionary sequences for low- and intermediate-mass X-ray binaries. ApJ, 565(2), 1107–1133. https://doi.org/10.1086/324686.
Popham, R. and Narayan, R. (1991) Does accretion cease when a star approaches breakup? ApJ, 370, 604–614. https://doi.org/10.1086/169847.
Postnov, K. A. and Kuranov, A. G. (2008) Neutron star spin–kick velocity correlation effect on binary neutron star coalescence rates and spin–orbit misalignment of the components. MNRAS, 384(4), 1393–1398. https://doi.org/10.1111/j.1365-2966.2007.12635.x.
Postnov, K. A. and Yungelson, L. R. (2014) The evolution of compact binary star systems. LRR, 17, 3. https://doi.org/10.12942/lrr-2014-3.
Poutanen, J., Lipunova, G., Fabrika, S., Butkevich, A. G., and Abolmasov, P. (2007) Supercritically accreting stellar mass black holes as ultraluminous X-ray sources. MNRAS, 377(3), 1187–1194. https://doi.org/10.1111/j.1365-2966.2007.11668.x.
Poutanen, J., Veledina, A., Berdyugin, A. V., Berdyugina, S. V., Jermak, H., Jonker, P. G., Kajava, J. J. E., Kosenkov, I. A., Kravtsov, V., Piirola, V., Shrestha, M., Torres, M. A. P., and Tsygankov, S. S. (2022) Black hole spin–orbit misalignment in the X-ray binary MAXI J1820+070. Sci, 375, 874–876. https://doi.org/10.1126/science.abl4679.
Qin, Y., Marchant, P., Fragos, T., Meynet, G., and Kalogera, V. (2019) On the origin of black hole spin in high-mass X-ray binaries. ApJL, 870, L18. https://doi.org/10.3847/2041-8213/aaf97b.
Remillard, R. A. and McClintock, J. E. (2006) X-ray properties of black-hole binaries. ARA&A, 44, 49–92. https://doi.org/10.1146/annurev.astro.44.051905.092532.
Repetto, S. and Nelemans, G. (2015) Constraining the formation of black holes in short-period black hole low-mass X-ray binaries. MNRAS, 453(3), 3342–3355. https://doi.org/10.1093/mnras/stv1753.
Reynolds, C. S. (2021) Observational constraints on black hole spin. ARA&A, 59, 117–154. https://doi.org/10.1146/annurev-astro-112420-035022.
Rocha, K. A., Kalogera, V., Doctor, Z., Andrews, J. J., Sun, M., Gossage, S., Bavera, S. S., Fragos, T., Kovlakas, K., Kruckow, M. U., Misra, D., Srivastava, P. M., Xing, Z., and Zapartas, E. (2024) To be or not to be: The role of rotation in modeling Galactic Be X-ray binaries. ApJ, 971(2), 133. https://doi.org/10.3847/1538-4357/ad5955.
Romero-Shaw, I., Hirai, R., Bahramian, A., Willcox, R., and Mandel, I. (2023) Rapid population synthesis of black hole high-mass X-ray binaries: implications for binary stellar evolution. MNRAS, 524(1), 245–259. https://doi.org/10.1093/mnras/stad1732.
Roulet, J., Chia, H. S., Olsen, S., Dai, L., Venumadhav, T., Zackay, B., and Zaldarriaga, M. (2021) Distribution of effective spins and masses of binary black holes from the LIGO and Virgo O1–O3a observing runs. PhRvD, 104(8), 083010. https://doi.org/10.1103/PhysRevD.104.083010.
Sahu, K. C., Anderson, J., Casertano, S., Bond, H. E., Udalski, A., Dominik, M., Calamida, A., Bellini, A., Brown, T. M., Rejkuba, M., and 83 more (2022) An isolated stellar-mass black hole detected through astrometric microlensing. ApJ, 933(1), 83. https://doi.org/10.3847/1538-4357/ac739e.
Schneider, F. R. N., Podsiadlowski, Ph., and Laplace, E. (2023) Bimodal black hole mass distribution and chirp masses of binary black hole mergers. ApJL, 950(2), L9. https://doi.org/10.3847/2041-8213/acd77a.
Schneider, F. R. N., Podsiadlowski, Ph., and Müller, B. (2021) Pre-supernova evolution, compact-object masses, and explosion properties of stripped binary stars. A&A, 645, A5. https://doi.org/10.1051/0004-6361/202039219.
Sen, K., Xu, X.-T., Langer, N., El Mellah, I., Schürmann, C., and Quast, M. (2021) X-ray emission from BH+O star binaries expected to descend from the observed galactic WR+O binaries. A&A, 652, A138. https://doi.org/10.1051/0004-6361/202141214.
Shao, Y. and Li, X.-D. (2014) On the formation of Be stars through binary interaction. ApJ, 796(1), 37. https://doi.org/10.1088/0004-637X/796/1/37.
Shenar, T., Sana, H., Mahy, L., El-Badry, K., Marchant, P., Langer, N., Hawcroft, C., Fabry, M., Sen, K., Almeida, L. A., Abdul-Masih, M., Bodensteiner, J., Crowther, P. A., Gieles, M., Gromadzki, M., Hénault-Brunet, V., Herrero, A., de Koter, A., Iwanek, P., Kozłowski, S., Lennon, D. J., Apellániz, J. M., Mróz, P., Moffat, A. F. J., Picco, A., Pietrukowicz, P., Poleski, R., Rybicki, K., Schneider, F. R. N., Skowron, D. M., Skowron, J., Soszyński, I., Szymański, M. K., Toonen, S., Udalski, A., Ulaczyk, K., Vink, J. S., and Wrona, M. (2022) An X-ray-quiet black hole born with a negligible kick in a massive binary within the Large Magellanic Cloud. NatAs, 6(9), 1085–1092. https://doi.org/10.1038/s41550-022-01730-y.
Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., and Janka, H.-T. (2016) Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. ApJ, 821(1), 38. https://doi.org/10.3847/0004-637X/821/1/38.
Team COMPAS: Riley, J., Agrawal, P., Barrett, J., Boyett, K., Broekgaarden, F., Chattopadhyay, D., Gaebel, S., Gittins, F., Hirai, R., Howitt, G., Justham, S., Khandelwal, L., Kummer, F., Lau, M., Mandel, I., de Mink, S., Neijssel, C., Riley, T., van Son, L., Stevenson, S., Vigna-Gómez, A., Vinciguerra, S., Wagg, T., and Willcox, R. (2022a) COMPAS: A rapid binary population synthesis suite. JOSS, 7(69), 3838. https://doi.org/10.21105/joss.03838.
Team COMPAS: Riley, J., Agrawal, P., Barrett, J. W., Boyett, K. N. K., Broekgaarden, F. S., Chattopadhyay, D., Gaebel, S. M., Gittins, F., Hirai, R., Howitt, G., Justham, S., Khandelwal, L., Kummer, F., Lau, M. Y. M., Mandel, I., de Mink, S. E., Neijssel, C., Riley, T., van Son, L., Stevenson, S., Vigna-Gómez, A., Vinciguerra, S., Wagg, T., and Willcox, R. (2022b) Rapid stellar and binary population synthesis with COMPAS. ApJS, 258(2), 34. https://doi.org/10.3847/1538-4365/ac416c.
Thompson, T. A., Kochanek, C. S., Stanek, K. Z., Badenes, C., Post, R. S., Jayasinghe, T., Latham, D. W., Bieryla, A., Esquerdo, G. A., Berlind, P., Calkins, M. L., Tayar, J., Lindegren, L., Johnson, J. A., Holoien, T. W.-S., Auchettl, K., and Covey, K. (2019) A noninteracting low-mass black hole–giant star binary system. Sci, 366, 637–640. https://doi.org/10.1126/science.aau4005.
Thorne, K. S. (1974) Disk-accretion onto a black hole. II. Evolution of the hole. ApJ, 191, 507–520. https://doi.org/10.1086/152991.
Valsecchi, F., Glebbeek, E., Farr, W. M., Fragos, T., Willems, B., Orosz, J. A., Liu, J., and Kalogera, V. (2010) Formation of the black-hole binary M33 X-7 through mass exchange in a tight massive system. Natur, 468, 77–79. https://doi.org/10.1038/nature09463.
Veledina, A., Muleri, F., Poutanen, J., Podgorný, J., Dovčiak, M., Capitanio, F., Churazov, E., De Rosa, A., Di Marco, A., Forsblom, S. V., and 120 more (2024) Cygnus X-3 revealed as a Galactic ultraluminous X-ray source by IXPE. NatAs, 8, 1031–1046. https://doi.org/10.1038/s41550-024-02294-9.
Vigna-Gómez, A., Neijssel, C. J., Stevenson, S., Barrett, J. W., Belczynski, K., Justham, S., de Mink, S. E., Müller, B., Podsiadlowski, Ph., Renzo, M., Szécsi, D., and Mandel, I. (2018) On the formation history of Galactic double neutron stars. MNRAS, 481(3), 4009–4029. https://doi.org/10.1093/mnras/sty2463.
Vigna-Gómez, A., Willcox, R., Tamborra, I., Mandel, I., Renzo, M., Wagg, T., Janka, H.-T., Kresse, D., Bodensteiner, J., Shenar, T., and Tauris, T. M. (2024) Constraints on neutrino natal kicks from black-hole binary VFTS 243. PhRvL, 132, 191 403. https://doi.org/10.1103/PhysRevLett.132.191403.
Vinciguerra, S., Neijssel, C. J., Vigna-Gómez, A., Mandel, I., Podsiadlowski, Ph., Maccarone, T. J., Nicholl, M., Kingdon, S., Perry, A., and Salemi, F. (2020) Be X-ray binaries in the SMC as indicators of mass-transfer efficiency. MNRAS, 498(4), 4705–4720. https://doi.org/10.1093/mnras/staa2177.
Vink, J. S. (2017) Mass loss and stellar superwinds. RSPTA, 375, 20160269. https://doi.org/10.1098/rsta.2016.0269.
Vink, J. S. and de Koter, A. (2005) On the metallicity dependence of Wolf–Rayet winds. A&A, 442(2), 587–596. https://doi.org/10.1051/0004-6361:20052862.
Webbink, R. F. (1984) Double white dwarfs as progenitors of R Coronae Borealis stars and Type ı supernovae. ApJ, 277, 355–360. https://doi.org/10.1086/161701.
Willcox, R., MacLeod, M., Mandel, I., and Hirai, R. (2023) The impact of angular momentum loss on the outcomes of binary mass transfer. ApJ, 958(2), 138. https://doi.org/10.3847/1538-4357/acffb1.
Willcox, R., Mandel, I., Thrane, E., Deller, A., Stevenson, S., and Vigna-Gómez, A. (2021) Constraints on weak supernova kicks from observed pulsar velocities. ApJL, 920(2), L37. https://doi.org/10.3847/2041-8213/ac2cc8.
Woosley, S. and Bloom, J. (2006) The supernova–gamma-ray burst connection. ARA&A, 44, 507–556. https://doi.org/10.1146/annurev.astro.43.072103.150558.
Woosley, S. E. (2017) Pulsational pair-instability supernovae. ApJ, 836(2), 244. https://doi.org/10.3847/1538-4357/836/2/244.
Wyrzykowski, Ł. and Mandel, I. (2020) Constraining the masses of microlensing black holes and the mass gap with Gaia DR2. A&A, 636, A20. https://doi.org/10.1051/0004-6361/201935842.
Xing, Z., Fragos, T., Zapartas, E., Kwan, T. M., Dai, L., Mandel, I., Kruckow, M. U., Briel, M., Andrews, J. J., Bavera, S. S., Gossage, S., Kovlakas, K., Rocha, K. A., Sun, M., and Srivastava, Ph. M. (2024) Formation of wind-fed black hole high-mass X-ray binaries: The role of Roche-lobe-overflow post black hole formation. A&A. https://doi.org/10.1051/0004-6361/202451275.
Yao, J., Zhu, W., Manchester, R. N., Coles, W. A., Li, D., Wang, N., Kramer, M., Stinebring, D. R., Feng, Y., Yan, W., Miao, C., Yuan, M., Wang, P., and Lu, J. (2021) Evidence for three-dimensional spin–velocity alignment in a pulsar. NatAs, 5(8), 788–795. https://doi.org/10.1038/s41550-021-01360-w.
Para citar este artículo
Acerca de: Ilya Mandel
The ARC Centre of Excellence for Gravitational Wave Discovery – OzGrav, Australia
email : ilya.mandel@monash.edu