- Home
- Volume 93 - Année 2024
- No 3 - 41st Liège International Astrophysical Coll...
- High-mass X-ray Binaries in Milky Way/Andromeda-like Galaxies
View(s): 34 (0 ULiège)
Download(s): 0 (0 ULiège)
High-mass X-ray Binaries in Milky Way/Andromeda-like Galaxies
Attached document(s)
original pdf fileAbstract
High-Mass X-ray Binaries (HMXBs) are important for the study of the evolution of massive stars, the formation of compact objects such as black holes (BH) and neutron stars (NS), and the binary evolution processes that govern these systems. Moreover, HMXBs are crucial for understanding the accretion processes responsible for X-ray emission and are also potential progenitors of gravitational wave (GW) sources. In this study, we explore the population of HMXBs within simulated MW/M31-like galaxies by employing the IllustrisTNG50 hydrodynamical simulation in combination with the SEVN population synthesis code. We populate these galaxies with HMXBs by selecting stellar particles based on spatial location, metallicity, and age, accounting for the effects of varying metallicities and binary evolution processes. Our results indicate that the number and luminosity of HMXBs are significantly influenced by metallicity, confirming previous findings. Furthermore, we reproduce the expected slopes of the X-ray luminosity function (XLF), as well as the orbital parameters and masses of these systems, finding that the power-law slope α of the XLF is within the observed range and consistent with Galactic observational data.
This work is distributed under the Creative Commons CC BY 4.0 Licence.
Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.
Bibliographie
Anastasopoulou, K., Zezas, A., Steiner, J. F., and Reig, P. (2022) Average bolometric corrections and optical to X-ray flux measurements as a function of accretion rate for X-ray binaries. MNRAS, 513(1), 1400–1413. https://doi.org/10.1093/mnras/stac940.
Artale, M. C., Giacobbo, N., Mapelli, M., and Esposito, P. (2019a) The high mass X-ray binaries in star-forming galaxies. Proceedings of the International Astronomical Union, 14(S346), 332–336. https://doi.org/10.1017/S1743921318007627.
Artale, M. C., Mapelli, M., Giacobbo, N., Sabha, N. B., Spera, M., Santoliquido, F., and Bressan, A. (2019b) Host galaxies of merging compact objects: mass, star formation rate, metallicity, and colours. MNRAS, 487(2), 1675–1688. https://doi.org/10.1093/mnras/stz1382.
Bowler, M. G. (2018) SS 433: Two robust determinations fix the mass ratio. A&A, 619, L4. https://doi.org/10.1051/0004-6361/201834121.
Bressan, A., Marigo, P., Girardi, L., Salasnich, B., Dal Cero, C., Rubele, S., and Nanni, A. (2012) PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. MNRAS, 427(1), 127–145. https://doi.org/10.1111/j.1365-2966.2012.21948.x.
Campana, S., Stella, L., Mereghetti, S., and de Martino, D. (2018) A universal relation for the propeller mechanisms in magnetic rotating stars at different scales. A&A, 610, A46. https://doi.org/10.1051/0004-6361/201730769.
Douna, V. M., Pellizza, L. J., Mirabel, I. F., and Pedrosa, S. E. (2015) Metallicity dependence of high-mass X-ray binary populations. A&A, 579, A44. https://doi.org/10.1051/0004-6361/201525617.
Dray, L. M. (2006) On the metallicity dependence of high-mass X-ray binaries. MNRAS, 370(4), 2079–2090. https://doi.org/10.1111/j.1365-2966.2006.10635.x.
Fishbach, M. and Kalogera, V. (2022) Apples and oranges: Comparing black holes in X-ray binaries and gravitational-wave sources. ApJL, 929(2), L26. https://doi.org/10.3847/2041-8213/ac64a5.
Fornasini, F., Antoniou, V., and Dubus, G. (2024) High-mass X-ray binaries. In Handbook of X-ray and Gamma-ray Astrophysics, edited by Bambi, C. and Santangelo, A., pages 3719–3773. Springer Nature, Singapore. https://doi.org/10.1007/978-981-19-6960-7_95.
Fortin, F., García, F., and Chaty, S. (2022) Finding the birthplace of HMXBs in the Galaxy using Gaia EDR3: Kinematical age determination through orbit integration. A&A, 665, A69. https://doi.org/10.1051/0004-6361/202244048.
Fortin, F., García, F., Simaz Bunzel, A., and Chaty, S. (2023) A catalogue of high-mass X-ray binaries in the Galaxy: from the INTEGRAL to the Gaia era. A&A, 671, A149. https://doi.org/10.1051/0004-6361/202245236.
Fragos, T., Lehmer, B., Tremmel, M., Tzanavaris, P., Basu-Zych, A., Belczynski, K., Hornschemeier, A., Jenkins, L., Kalogera, V., Ptak, A., and Zezas, A. (2013) X-ray binary evolution across cosmic time. ApJ, 764(1), 41. https://doi.org/10.1088/0004-637X/764/1/41.
Fryer, C. L., Belczynski, K., Wiktorowicz, G., Dominik, M., Kalogera, V., and Holz, D. E. (2012) Compact remnant mass function: Dependence on the explosion mechanism and metallicity. ApJ, 749(1), 91. https://doi.org/10.1088/0004-637X/749/1/91.
Grimm, H.-J., Gilfanov, M., and Sunyaev, R. (2003) High-mass X-ray binaries as a star formation rate indicator in distant galaxies. MNRAS, 339(3), 793–809. https://doi.org/10.1046/j.1365-8711.2003.06224.x.
Hurley, J. R., Tout, C. A., and Pols, O. R. (2002) Evolution of binary stars and the effect of tides on binary populations. MNRAS, 329(4), 897–928. https://doi.org/10.1046/j.1365-8711.2002.05038.x.
Iorio, G., Mapelli, M., Costa, G., Spera, M., Escobar, G. J., Sgalletta, C., Trani, A. A., Korb, E., Santoliquido, F., Dall’Amico, M., Gaspari, N., and Bressan, A. (2023) Compact object mergers: exploring uncertainties from stellar and binary evolution with SEVN. MNRAS, 524(1), 426–470. https://doi.org/10.1093/mnras/stad1630.
Kroupa, P. (2001) On the variation of the initial mass function. MNRAS, 322(2), 231–246. https://doi.org/10.1046/j.1365-8711.2001.04022.x.
Lehmer, B. D., Eufrasio, R. T., Basu-Zych, A., Doore, K., Fragos, T., Garofali, K., Kovlakas, K., Williams, B. F., Zezas, A., and Santana-Silva, L. (2021) The metallicity dependence of the high-mass X-ray binary luminosity function. ApJ, 907(1), 17. https://doi.org/10.3847/1538-4357/abcec1.
Linden, T., Kalogera, V., Sepinsky, J. F., Prestwich, A., Zezas, A., and Gallagher, J. S. (2010) The effect of starburst metallicity on bright X-ray binary formation pathways. ApJ, 725(2), 1984–1994. https://doi.org/10.1088/0004-637X/725/2/1984.
Mapelli, M., Colpi, M., and Zampieri, L. (2009) Low metallicity and ultra-luminous X-ray sources in the Cartwheel galaxy. MNRAS, 395(1), L71–L75. https://doi.org/10.1111/j.1745-3933.2009.00645.x.
Mapelli, M., Giacobbo, N., Ripamonti, E., and Spera, M. (2017) The cosmic merger rate of stellar black hole binaries from the Illustris simulation. MNRAS, 472(2), 2422–2435. https://doi.org/10.1093/mnras/stx2123.
Miller-Jones, J. C. A., Bahramian, A., Orosz, J. A., Mandel, I., Gou, L., Maccarone, T. J., Neijssel, C. J., Zhao, X., Ziółkowski, J., Reid, M. J., Uttley, P., Zheng, X., Byun, D.-Y., Dodson, R., Grinberg, V., Jung, T., Kim, J.-S., Marcote, B., Markoff, S., Rioja, M. J., Rushton, A. P., Russell, D. M., Sivakoff, G. R., Tetarenko, A. J., Tudose, V., and Wilms, J. (2021) Cygnus X-1 contains a 21-solar mass black hole—implications for massive star winds. Sci, 371, 1046–1049. https://doi.org/10.1126/science.abb3363.
Mineo, S., Gilfanov, M., and Sunyaev, R. (2012) X-ray emission from star-forming galaxies – I. High-mass X-ray binaries. MNRAS, 419(3), 2095–2115. https://doi.org/10.1111/j.1365-2966.2011.19862.x.
Misra, D., Kovlakas, K., Fragos, T., Lazzarini, M., Bavera, S. S., Lehmer, B. D., Zezas, A., Zapartas, E., Xing, Z., Andrews, J. J., Dotter, A., Rocha, K. A., Srivastava, Ph. M., and Sun, M. (2023) X-ray luminosity function of high-mass X-ray binaries: Studying the signatures of different physical processes using detailed binary evolution calculations. A&A, 672, A99. https://doi.org/10.1051/0004-6361/202244929.
Nathanail, A., Most, E. R., and Rezzolla, L. (2021) GW170817 and GW190814: Tension on the maximum mass. ApJL, 908(2), L28. https://doi.org/10.3847/2041-8213/abdfc6.
Nelson, D., Pillepich, A., Springel, V., Pakmor, R., Weinberger, R., Genel, S., Torrey, P., Vogelsberger, M., Marinacci, F., and Hernquist, L. (2019) First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. MNRAS, 490(3), 3234–3261. https://doi.org/10.1093/mnras/stz2306.
Nguyen, C. T., Costa, G., Girardi, L., Volpato, G., Bressan, A., Chen, Y., Marigo, P., Fu, X., and Goudfrooij, P. (2022) PARSEC V2.0: Stellar tracks and isochrones of low- and intermediate-mass stars with rotation. A&A, 665, A126. https://doi.org/10.1051/0004-6361/202244166.
Picchi, P., Shore, S. N., Harvey, E. J., and Berdyugin, A. (2020) An optical spectroscopic and polarimetric study of the microquasar binary system SS 433. A&A, 640, A96. https://doi.org/10.1051/0004-6361/202037960.
Pillepich, A., Sotillo-Ramos, D., Ramesh, R., Nelson, D., Engler, C., Rodriguez-Gomez, V., Fournier, M., Donnari, M., Springel, V., and Hernquist, L. (2024) Milky Way and Andromeda analogues from the TNG50 simulation. MNRAS, 535(2), 1721–1762. https://doi.org/10.1093/mnras/stae2165.
Podsiadlowski, Ph., Rappaport, S., and Han, Z. (2003) On the formation and evolution of black hole binaries. MNRAS, 341(2), 385–404. https://doi.org/10.1046/j.1365-8711.2003.06464.x.
Sana, H., de Mink, S. E., de Koter, A., Langer, N., Evans, C. J., Gieles, M., Gosset, E., Izzard, R. G., Le Bouquin, J.-B., and Schneider, F. R. N. (2012) Binary interaction dominates the evolution of massive stars. Sci, 337, 444–446. https://doi.org/10.1126/science.1223344.
Sgalletta, C., Iorio, G., Mapelli, M., Artale, M. C., Boco, L., Chattopadhyay, D., Lapi, A., Possenti, A., Rinaldi, S., and Spera, M. (2023) Binary neutron star populations in the Milky Way. MNRAS, 526(2), 2210–2229. https://doi.org/10.1093/mnras/stad2768.
Spera, M., Mapelli, M., and Bressan, A. (2015) The mass spectrum of compact remnants from the PARSEC stellar evolution tracks. MNRAS, 451(4), 4086–4103. https://doi.org/10.1093/mnras/stv1161.
van den Heuvel, E. P. J. (2019) High-mass X-ray binaries: progenitors of double compact objects. Proceedings of the International Astronomical Union, 14(S346), 1–13. https://doi.org/10.1017/S1743921319001315.
To cite this article
About: Felipe Vivanco Cádiz
email : fvivanco@me.com
About: M. Celeste Artale
About: Nicola Masetti
Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Físicas, Instituto de Astrofísica, Av. Fernández Concha 700, Santiago, Chile
About: Gastón J. Escobar
INFN – Padova, Via Marzolo 8, I–35131 Padova, Italy
About: Giuliano Iorio
INFN – Padova, Via Marzolo 8, I–35131 Padova, Italy
INAF – Padova, Vicolo dell’Osservatorio 5, I–35122 Padova, Italy