- Accueil
- Volume 93 - Année 2024
- No 3 - 41st Liège International Astrophysical Coll...
- Mass Transfer in High-mass X-Ray Binaries: from Roche Lobe Overflow to Hoyle–Lyttleton Accretion
Visualisation(s): 19 (2 ULiège)
Téléchargement(s): 0 (0 ULiège)
Mass Transfer in High-mass X-Ray Binaries: from Roche Lobe Overflow to Hoyle–Lyttleton Accretion
Document(s) associé(s)
Version PDF originaleAbstract
We use a new overset dual spherical grid system to evolve the circumstellar gas flow in the High-Mass X-Ray Binary Vela X-1 to investigate the gravitational capture of the donor star’s wind and subsequent accretion onto the neutron star companion. For a fast, relatively undistorted stellar wind (small filling factor) we find results consistent with classical Hoyle–Lyttleton accretion with the formation of a steady, nearly axisymmetric bow shock. For models with a filling factor near unity, the mass transfer is dominated by a tidal stream feeding into a thin accretion disk. Finally, for slow winds without Roche Lobe Overflow we find the formation of a wind bow shock but with enough post shock angular momentum to form a thin, stable accretion disk.
This work is distributed under the Creative Commons CC BY 4.0 Licence.
Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.
Bibliographie
[1] Giacconi, R. (2003) Nobel Lecture: The dawn of x-ray astronomy. RvMPh, 75(3), 995–1010. https://doi.org/10.1103/RevModPhys.75.995.
[2] Davidson, K. and Ostriker, J. P. (1973) Neutron-star accretion in a stellar wind: Model for a pulsed X-ray source. ApJ, 179, 585–598. https://doi.org/10.1086/151897.
[3] Shakura, N. I. and Sunyaev, R. A. (1973) Black holes in binary systems. Observational appearance. A&A, 24, 337–355. https://ui.adsabs.harvard.edu/abs/1973A&A....24..337S.
[4] Blondin, J. M., Stevens, I. R., and Kallman, T. R. (1991) Enhanced winds and tidal streams in massive X-ray binaries. ApJ, 371, 684–695. https://doi.org/10.1086/169934.
[5] El Mellah, I., Sander, A. A. C., Sundqvist, J. O., and Keppens, R. (2019) Formation of wind-captured disks in supergiant X-ray binaries: Consequences for Vela X-1 and Cygnus X-1. A&A, 622, A189. https://doi.org/10.1051/0004-6361/201834498.
[6] Kageyama, A. and Sato, T. (2004) “Yin–Yang grid”: An overset grid in spherical geometry. GGG, 5(9), Q09005. https://doi.org/10.1029/2004GC000734.
[7] Blondin, J. M. and Raymer, E. (2012) Hoyle–Lyttleton accretion in three dimensions. ApJ, 752(1), 30. https://doi.org/10.1088/0004-637X/752/1/30.
[8] Castor, J. I., Abbott, D. C., and Klein, R. I. (1975) Radiation-driven winds in Of stars. ApJ, 195(1), 157–174. https://doi.org/10.1086/153315.
[9] Kretschmar, P., El Mellah, I., Martínez-Núñez, S., Fürst, F., Grinberg, V., Sander, A. A. C., van den Eijnden, J., Degenaar, N., Maíz Apellániz, J., Jiménez Esteban, F., Ramos-Lerate, M., and Utrilla, E. (2021) Revisiting the archetypical wind accretor Vela X-1 in depth: Case study of a well-known X-ray binary and the limits of our knowledge. A&A, 652, A95. https://doi.org/10.1051/0004-6361/202040272.
[10] Hoyle, F. and Lyttleton, R. A. (1939) The effect of interstellar matter on climatic variation. PCPS, 35(3), 405–415. https://doi.org/10.1017/S0305004100021150.
Pour citer cet article
A propos de : John M. Blondin
email : john_blondin@ncsu.edu