sinds 05 februari 2011 :
Weergave(s): 19 (2 ULiège)
Download(s): 0 (0 ULiège)
print        
Erika Korb

Compact Objects with Wolf–Rayet Companions: a Key Binary Configuration to Produce Gravitational Wave Mergers

(Volume 93 - Année 2024 — No 3 - 41st Liège International Astrophysical Colloquium)
Article
Open Access

Documenten bij dit artikel

Version PDF originale

Abstract

The properties of binaries hosting a Wolf–Rayet star and a compact object (black hole or neutron star) suggest that such systems could be the progenitors of binary compact objects merging via gravitational wave emission. We used the population-synthesis code SEVN to explore this possibility and account for current uncertainties in theoretical models. According to our simulations, most (more than about 83%) binary compact object mergers were once compact objects with Wolf–Rayet companions. Binaries like Cyg X-3, the only candidate hosting a Wolf–Rayet and a compact object observed in the Milky Way, are more likely (approximately 70%–100%) to become binary compact object mergers if they host a black hole. This work indicates that further characterization of systems like Cyg X-3 can unveil the formation mechanisms of binary compact object mergers.

Keywords : Wolf–Rayet star, black hole, neutron star, gravitational waves, binary evolution, population-synthesis, Cyg X-3

This work is distributed under the Creative Commons CC BY 4.0 Licence.

Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.

Bibliographie

Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., Adhikari, N., Adhikari, R. X., Adya, V. B., Affeldt, C., Agarwal, D., and 1648 more (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration) (2023) GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. PhRvX, 13(4), 041039. https://doi.org/10.1103/PhysRevX.13.041039.

Atri, P., Miller-Jones, J. C. A., Bahramian, A., Plotkin, R. M., Jonker, P. G., Nelemans, G., Maccarone, T. J., Sivakoff, G. R., Deller, A. T., Chaty, S., Torres, M. A. P., Horiuchi, S., McCallum, J., Natusch, T., Phillips, C. J., Stevens, J., and Weston, S. (2019) Potential kick velocity distribution of black hole X-ray binaries and implications for natal kicks. MNRAS, 489(3), 3116–3134. https://doi.org/10.1093/mnras/stz2335.

Belczynski, K., Bulik, T., Mandel, I., Sathyaprakash, B. S., Zdziarski, A. A., and Mikołajewska, J. (2013) Cyg X-3: A Galactic double black hole or black-hole–neutron-star progenitor. ApJ, 764(1), 96. https://doi.org/10.1088/0004-637X/764/1/96.

Bethe, H. A. and Brown, G. E. (1998) Evolution of binary compact objects that merge. ApJ, 506(2), 780–789. https://doi.org/10.1086/306265.

Bulik, T., Belczynski, K., and Prestwich, A. (2011) IC10 X-1/NGC300 X-1: The very immediate progenitors of BH–BH binaries. ApJ, 730(2), 140. https://doi.org/10.1088/0004-637X/730/2/140.

Crowther, P. A. (2007) Physical properties of Wolf–Rayet stars. ARA&A, 45, 177–219. https://doi.org/10.1146/annurev.astro.45.051806.110615.

Esposito, P., Israel, G. L., Milisavljevic, D., Mapelli, M., Zampieri, L., Sidoli, L., Fabbiano, G., and Rodríguez Castillo, G. A. (2015) Periodic signals from the Circinus region: two new cataclysmic variables and the ultraluminous X-ray source candidate GC X-1. MNRAS, 452(2), 1112–1127. https://doi.org/10.1093/mnras/stv1379.

Fryer, C. L., Belczynski, K., Wiktorowicz, G., Dominik, M., Kalogera, V., and Holz, D. E. (2012) Compact remnant mass function: Dependence on the explosion mechanism and metallicity. ApJ, 749(1), 91. https://doi.org/10.1088/0004-637X/749/1/91.

Giacobbo, N. and Mapelli, M. (2020) Revising natal kick prescriptions in population synthesis simulations. ApJ, 891(2), 141. https://doi.org/10.3847/1538-4357/ab7335.

Hainich, R., Rühling, U., Todt, H., Oskinova, L. M., Liermann, A., Gräfener, G., Foellmi, C., Schnurr, O., and Hamann, W.-R. (2014) The Wolf–Rayet stars in the Large Magellanic Cloud: A comprehensive analysis of the WN class. A&A, 565, A27. https://doi.org/10.1051/0004-6361/201322696.

Hobbs, G., Lorimer, D. R., Lyne, A. G., and Kramer, M. (2005) A statistical study of 233 pulsar proper motions. MNRAS, 360(3), 974–992. https://doi.org/10.1111/j.1365-2966.2005.09087.x.

Iorio, G., Mapelli, M., Costa, G., Spera, M., Escobar, G. J., Sgalletta, C., Trani, A. A., Korb, E., Santoliquido, F., Dall’Amico, M., Gaspari, N., and Bressan, A. (2023) Compact object mergers: exploring uncertainties from stellar and binary evolution with SEVN. MNRAS, 524(1), 426–470. https://doi.org/10.1093/mnras/stad1630.

Koljonen, K. I. I. and Maccarone, T. J. (2017) Gemini/GNIRS infrared spectroscopy of the Wolf–Rayet stellar wind in Cygnus X-3. MNRAS, 472(2), 2181–2195. https://doi.org/10.1093/mnras/stx2106.

Kroupa, P. (2001) On the variation of the initial mass function. MNRAS, 322(2), 231–246. https://doi.org/10.1046/j.1365-8711.2001.04022.x.

Kruckow, M. U., Tauris, T. M., Langer, N., Kramer, M., and Izzard, R. G. (2018) Progenitors of gravitational wave mergers: binary evolution with the stellar grid-based code COMBINE. MNRAS, 481(2), 1908–1949. https://doi.org/10.1093/mnras/sty2190.

Mandel, I. and Broekgaarden, F. S. (2022) Rates of compact object coalescences. LRR, 25, 1. https://doi.org/10.1007/s41114-021-00034-3.

Mapelli, M. (2021) Formation channels of single and binary stellar-mass black holes. In Handbook of Gravitational Wave Astronomy, edited by Cosimo Bambi, K. D. K., Stavros Katsanevas, pages 1–65. Springer, Singapore. https://doi.org/10.1007/978-981-15-4702-7_16-1.

Mapelli, M., Spera, M., Montanari, E., Limongi, M., Chieffi, A., Giacobbo, N., Bressan, A., and Bouffanais, Y. (2020) Impact of the rotation and compactness of progenitors on the mass of black holes. ApJ, 888(2), 76. https://doi.org/10.3847/1538-4357/ab584d.

Marchant, P., Pappas, K. M. W., Gallegos-Garcia, M., Berry, C. P. L., Taam, R. E., Kalogera, V., and Podsiadlowski, Ph. (2021) The role of mass transfer and common envelope evolution in the formation of merging binary black holes. A&A, 650, A107. https://doi.org/10.1051/0004-6361/202039992.

Moe, M. and Di Stefano, R. (2017) Mind your Ps and Qs: The interrelation between period (P ) and mass-ratio (Q) distributions of binary stars. ApJS, 230, 15. https://doi.org/10.3847/1538-4365/aa6fb6.

O’Connor, E. and Ott, C. D. (2011) Black hole formation in failing core-collapse supernovae. ApJ, 730(2), 70. https://doi.org/10.1088/0004-637X/730/2/70.

Peters, P. C. (1964) Gravitational radiation and the motion of two point masses. PhRev, 136(4B), B1224–B1232. https://doi.org/10.1103/PhysRev.136.B1224.

Sana, H., de Mink, S. E., de Koter, A., Langer, N., Evans, C. J., Gieles, M., Gosset, E., Izzard, R. G., Le Bouquin, J.-B., and Schneider, F. R. N. (2012) Binary interaction dominates the evolution of massive stars. Sci, 337, 444–446. https://doi.org/10.1126/science.1223344.

Schneider, F. R. N., Podsiadlowski, Ph., and Laplace, E. (2023) Bimodal black hole mass distribution and chirp masses of binary black hole mergers. ApJL, 950(2), L9. https://doi.org/10.3847/2041-8213/acd77a.

Shenar, T., Gilkis, A., Vink, J. S., Sana, H., and Sander, A. A. C. (2020) Why binary interaction does not necessarily dominate the formation of Wolf–Rayet stars at low metallicity. A&A, 634, A79. https://doi.org/10.1051/0004-6361/201936948.

Singh, N. S., Naik, S., Paul, B., Agrawal, P. C., Rao, A. R., and Singh, K. Y. (2002) New measurements of orbital period change in Cygnus X-3. A&A, 392(1), 161–167. https://doi.org/10.1051/0004-6361:20020923.

Tauris, T. M., Kramer, M., Freire, P. C. C., Wex, N., Janka, H.-T., Langer, N., Podsiadlowski, Ph., Bozzo, E., Chaty, S., Kruckow, M. U., Heuvel, E. P. J. v. d., Antoniadis, J., Breton, R. P., and Champion, D. J. (2017) Formation of double neutron star systems. ApJ, 846(2), 170. https://doi.org/10.3847/1538-4357/aa7e89.

Vink, J. S., Muijres, L. E., Anthonisse, B., de Koter, A., Gräfener, G., and Langer, N. (2011) Wind modelling of very massive stars up to 300 solar masses. A&A, 531, A132. https://doi.org/10.1051/0004-6361/201116614.

Webbink, R. F. (1984) Double white dwarfs as progenitors of R Coronae Borealis stars and Type ı supernovae. ApJ, 277, 355–360. https://doi.org/10.1086/161701.

Zdziarski, A. A., Mikołajewska, J., and Belczyński, K. (2013) Cyg X-3: a low-mass black hole or a neutron star. MNRAS, 429(1), L104–L108. https://doi.org/10.1093/mnrasl/sls035.

Om dit artikel te citeren:

Erika Korb, «Compact Objects with Wolf–Rayet Companions: a Key Binary Configuration to Produce Gravitational Wave Mergers», Bulletin de la Société Royale des Sciences de Liège [En ligne], Volume 93 - Année 2024, No 3 - 41st Liège International Astrophysical Colloquium, 363-373 URL : https://popups.uliege.be/0037-9565/index.php?id=12414.

Over : Erika Korb

Physics and Astronomy Department, University of Padova, Vicolo dell’Osservatorio 3, I–35122, Padova, Italy
INFN – Padova, Via Marzolo 8, I–35131 Padova, Italy
Institut für Theoretische Astrophysik, ZAH, Universität Heidelberg, Albert-Ueberle-Straße 2, D–69120 Heidelberg, Germany
email: erika.korb@studenti.unipd.it