Ce site Web utilise des cookies

L'Université de Liège souhaite utiliser des cookies ou traceurs pour stocker et accéder à des données à caractère personnel vous concernant pour effectuer des mesures d'audience et permettre des fonctionnalités liées aux réseaux sociaux. Certains cookies sont nécessaires au fonctionnement du site. Politique d'utilisation des cookies.

ya que 05 febrero 2011 :
Vista(s): 1132 (7 ULiège)
Descargar(s): 587 (4 ULiège)
print        
Fabienne Prosmans

DERIVED LIMITS IN QUASI-ABELIAN CATEGORIES

(Volume 68 - Année 1999 — Numéro 5 - 6)
Article
Open Access
Mots-clés : non-abelian homological algebra, quasi-abelian categories, derived projective limits, homological methods for functional analysis

Abstract

In this paper, we study the derived functors of projective limit functors in quasi-abelian categories. First, we show that if is a quasi-abelian category with exact products, projective limit functors are right derivable and their derived functors are computable using a generalization of a construction of Roos. Next, we study index restriction and extension functors and link them trough the symbolic Hom-functor. If  is a functor between small categories and if E is a projective system indexed by , this allows us to give a condition for the derived projective limits of E and E J to be isomorphic. Note that this condition holds, if  and  are filtering and J is cofinal. Using the preceding results, we establish that the n-th left cohomological functor of the derived projective limit of a projective system indexed by  vanishes for n k, if the cofinality of  is strictly lower than the k-th infinite cardinal number. Finally, we consider the limits of pro-objects of a quasi-abelian category. From our study, it follows, in particular, that the derived projective limit of a filtering projective system depends only on the associated pro-object.


11991 AMS Mathematics Subject Classification : 18G50, 18A30,46M20

Para citar este artículo

Fabienne Prosmans, «DERIVED LIMITS IN QUASI-ABELIAN CATEGORIES», Bulletin de la Société Royale des Sciences de Liège [En ligne], Volume 68 - Année 1999, Numéro 5 - 6, 335 - 401 URL : https://popups.uliege.be/0037-9565/index.php?id=2128.

Acerca de: Fabienne Prosmans

Laboratoire Analyse, Géométrie et Applications, UMR 7539, Université Paris 13, Avenue J.-B Clément, 93430 Villetaneuse, prosmans@math.univ-paris13.fr