since 07 November 2024 :

View(s) :

1 (0 ULiège)

Download(s) :

0 (0 ULiège)

The Universe from Nothing: A Mathematical Lattice of Empty Sets

p. 3-24

Abstract

Major principles of mathematical constitution of space and the principles of construction of physical space are presented. The existence of a Boolean lattice with fractal properties originating from nonwellfounded properties of the empty set is demonstrated. Space-time emerges as an ordered sequence of mappings of closed 3-D Poincaré sections of a topological 4-space-time provided by the lattice of primary empty cells. The fractal kernel stands for a particle and the reduction of its volume is compensated by morphic changes of a finite number of surrounding cells. Quanta of distances and quanta of fractality are demonstrated. Deformation attributes associated to mass determine the inert mass and the gravitational effects, but fractal deformations of cells are responsible for such characteristics as spin and charge.

Text

Download Facsimile [PDF, 12M]

References

Bibliographical reference

Michel Bounias and Volodymyr Krasnoholovets, « The Universe from Nothing: A Mathematical Lattice of Empty Sets », CASYS, 16 | 2004, 3-24.

Electronic reference

Michel Bounias and Volodymyr Krasnoholovets, « The Universe from Nothing: A Mathematical Lattice of Empty Sets », CASYS [Online], 16 | 2004, Online since 31 July 2024, connection on 27 December 2024. URL : http://popups.uliege.be/3041-539x/index.php?id=2322

Authors

Michel Bounias

BioMathematics Unit, d'Avignon University and INRA, France

By this author

Volodymyr Krasnoholovets

Institute for Basic Research, 90 East Winds Court, Palm Harbor, FL 34683, USA

By this author

Copyright

CC BY-SA 4.0 Deed