- Accueil
- Volume 93 - Année 2024
- No 3 - 41st Liège International Astrophysical Coll...
- Apsidal Motion in Massive Binaries: Or How to Sound Stellar Interiors Without Asteroseismology
Visualisation(s): 46 (5 ULiège)
Téléchargement(s): 0 (0 ULiège)
Apsidal Motion in Massive Binaries: Or How to Sound Stellar Interiors Without Asteroseismology
Document(s) associé(s)
Version PDF originaleAbstract
The determination of the apsidal motion in close eccentric binary systems is (one of) the most efficient and reliable observational technique allowing to probe the internal structure of a star. The apsidal motion is the secular precession of the binary orbit’s major axis and it is dependent on the tidal interactions occurring between the two stars. The apsidal motion rate is directly related to the internal structure of the stars, in particular their inner stellar density profile. The rate of apsidal motion can be constrained, together with the fundamental parameters of the stars, through state-of-the-art adjustment of combined radial velocity and light curve measurements made over a long timescale. The internal structures of the stars are subsequently constrained through the confrontation of the observationally determined parameters to theoretical models of stellar structure and evolution. This powerful technique has been known for years but has been seldom applied to massive stars. I highlight its interest and discuss recent results concerning several massive binaries, among others one binary that captured our attention for decades notably due to its twin property: HD 152248. While standard 1D stellar evolution models predict stars having a smaller internal stellar structure constant, that is to say, stars having a lower density contrast, than expected from observations, I demonstrate that the addition of mixing inside the models helps to solve, at least partially, this discrepancy. Whether this additional mixing might be fully explained by rotational mixing is under investigation. Ongoing studies with the non-perturbative code MoBiDICT show that the perturbative model assumption is not justified in highly distorted stars. In these cases, the apsidal motion is underestimated, which exacerbates even more the need for enhanced mixing inside the models.
This work is distributed under the Creative Commons CC BY 4.0 Licence.
Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.
Bibliographie
Barclay, K. D. G., Rosu, S., Richardson, N. D., Chené, A.-N., St-Louis, N., Ignace, R., and Moffat, A. F. J. (2024) Using CHIRON spectroscopy to test the hypothesis of a precessing orbit for the WN4 star EZ CMa. MNRAS, 527(2), 2198–2208. https://doi.org/10.1093/mnras/stad3289.
Baroch, D., Giménez, A., Morales, J. C., Ribas, I., Herrero, E., Perdelwitz, V., Jordi, C., Granzer, T., and Allende Prieto, C. (2022) Absolute dimensions and apsidal motion of the eclipsing binaries V889 Aquilae and V402 Lacertae. A&A, 665, A13. https://doi.org/10.1051/0004-6361/202244287.
Baroch, D., Giménez, A., Ribas, I., Morales, J. C., Anglada-Escudé, G., and Claret, A. (2021) Analysis of apsidal motion in eclipsing binaries using TESS data. I. A test of gravitational theories. A&A, 649, A64. https://doi.org/10.1051/0004-6361/202040004.
Claret, A. (2023) Theoretical tidal evolution constants for stellar models from the pre-main sequence to the white dwarf stage. Apsidal motion constants, moment of inertia, and gravitational potential energy. A&A, 674, A67. https://doi.org/10.1051/0004-6361/202346250.
Claret, A., Giménez, A., Baroch, D., Ribas, I., Morales, J. C., and Anglada-Escudé, G. (2021) Analysis of apsidal motion in eclipsing binaries using TESS data. II. A test of internal stellar structure. A&A, 654, A17. https://doi.org/10.1051/0004-6361/202141484.
Eggenberger, P., Meynet, G., Maeder, A., Hirschi, R., Charbonnel, C., Talon, S., and Ekström, S. (2008) The Geneva stellar evolution code. Ap&SS, 316(1-4), 43–54. https://doi.org/10.1007/s10509-007-9511-y.
Fellay, L. and Dupret, M.-A. (2023) MoBiDICT: New 3D static models of close synchronised binaries in hydrostatic equilibrium. A&A, 676, A22. https://doi.org/10.1051/0004-6361/202346175.
Fellay, L., Dupret, M.-A., and Rosu, S. (2024) Underestimation of the tidal force and apsidal motion in close binary systems by the perturbative approach: Comparisons with non-perturbative models. A&A, 683, A210. https://doi.org/10.1051/0004-6361/202348134.
Giménez, A. and Bastero, M. (1995) A revision of the ephemeris–curve equations for eclipsing binaries with apsidal motion. Ap&SS, 226(1), 99–107. https://doi.org/10.1007/BF00626903.
Harmanec, P., Holmgren, D. E., Wolf, M., Božić, H., Guinan, E. F., Kang, Y. W., Mayer, P., McCook, G. P., Nemravová, J., Yang, S., Šlechta, M., Ruždjak, D., Sudar, D., and Svoboda, P. (2014) Revised physical elements of the astrophysically important O9.5+O9.5V eclipsing binary system Y Cygni. A&A, 563, A120. https://doi.org/10.1051/0004-6361/201323230.
Hejlesen, P. M. (1987) Studies in stellar evolution. III. The internal structure constants. A&AS, 69(2), 251–262. https://ui.adsabs.harvard.edu/abs/1987A&AS...69..251H.
Hill, G., Crawford, D. L., and Barnes, J. V. (1974) Some new spectroscopic binary orbits in NGC 6231 and Sco OB1. AJ, 79, 1271–1279. https://doi.org/10.1086/111672.
Hong, K., Lee, J. W., Kim, S.-L., Koo, J.-R., and Lee, C.-U. (2016) Apsidal motions of 90 eccentric binary systems in the Small Magellanic Cloud. MNRAS, 460(1), 650–663. https://doi.org/10.1093/mnras/stw955.
Lacy, C. H. S., Torres, G., Fekel, F. C., Muterspaugh, M. W., and Southworth, J. (2015) Absolute properties of the eclipsing binary star IM Persei. AJ, 149(1), 34. https://doi.org/10.1088/0004-6256/149/1/34.
Marcussen, M. L. and Albrecht, S. H. (2022) The BANANA Project. VI. Close double stars are well aligned with noticeable exceptions; results from an ensemble study using apsidal motion and Rossiter–McLaughlin measurements. ApJ, 933(2), 227. https://doi.org/10.3847/1538-4357/ac75c2.
Penny, L. R., Gies, D. R., and Bagnuolo, W. G., Jr. (1999) Tomographic separation of composite spectra. VI. The physical properties of the massive close binary HD 152248. ApJ, 518(1), 450–456. https://doi.org/10.1086/307263.
Rauw, G., Rosu, S., Noels, A., Mahy, L., Schmitt, J. H. M. M., Godart, M., Dupret, M.-A., and Gosset, E. (2016) Apsidal motion in the massive binary HD 152218. A&A, 594, A33. https://doi.org/10.1051/0004-6361/201628766.
Rosu, S. (2021) What apsidal motion reveals about the interior of massive binary stars. BSRSL, 90(1), 1–16. https://doi.org/10.25518/0037-9565.10017.
Rosu, S. (2022) Apsidal Motion in O-Star Binaries: Constraining the Internal Structure of the Stars. Ph.D. thesis, Université de Liège [Sciences], Liège (BE). https://hdl.handle.net/2268/292652.
Rosu, S., Fellay, L., Rauw, G., and Dupret, M.-A. (in press) Apsidal motion in (massive) binaries. Central European Astrophysical Bulletin.
Rosu, S., Noels, A., Dupret, M.-A., Rauw, G., Farnir, M., and Ekström, S. (2020a) Apsidal motion in the massive binary HD 152248: Constraining the internal structure of the stars. A&A, 642, A221. https://doi.org/10.1051/0004-6361/202038380.
Rosu, S., Quintero, E. A., Rauw, G., and Eenens, P. (2023) New insight into the massive eccentric binary HD 165052: self-consistent orbital solution, apsidal motion, and fundamental parameters. MNRAS, 521(2), 2988–3003. https://doi.org/10.1093/mnras/stad780.
Rosu, S., Rauw, G., Conroy, K. E., Gosset, E., Manfroid, J., and Royer, P. (2020b) Apsidal motion in the massive binary HD 152248. A&A, 635, A145. https://doi.org/10.1051/0004-6361/201937285.
Rosu, S., Rauw, G., Farnir, M., Dupret, M.-A., and Noels, A. (2022a) Apsidal motion in massive eccentric binaries in NGC 6231: The case of HD 152219. A&A, 660, A120. https://doi.org/10.1051/0004-6361/202141304.
Rosu, S., Rauw, G., Nazé, Y., Gosset, E., and Sterken, C. (2022b) Apsidal motion in massive eccentric binaries: The case of CPD-41° 7742, and HD 152218 revisited. A&A, 664, A98. https://doi.org/10.1051/0004-6361/202243707.
Scuflaire, R., Théado, S., Montalbán, J., Miglio, A., Bourge, P.-O., Godart, M., Thoul, A., and Noels, A. (2008) CLÉS, Code Liégeois d’Évolution Stellaire. Ap&SS, 316(1-4), 83–91. https://doi.org/10.1007/s10509-007-9650-1.
Shakura, N. I. (1985) On the apsidal motion in binary stars. SvAL, 11, 224–226. https://ui.adsabs.harvard.edu/abs/1985SvAL...11..224S.
Sterne, T. E. (1939) Apsidal motion in binary stars. MNRAS, 99(5), 451–462. https://doi.org/10.1093/mnras/99.5.451.
Struve, O. (1944) Radial velocities of twenty stars of early type in and near the galactic cluster NGC 6231. ApJ, 100, 189–201. https://doi.org/10.1086/144657.
Torres, G., Andersen, J., and Giménez, A. (2010) Accurate masses and radii of normal stars: modern results and applications. A&AR, 18(1-2), 67–126. https://doi.org/10.1007/s00159-009-0025-1.
Wolf, M., Claret, A., Kotková, L., Kučáková, H., Kocián, R., Brát, L., Svoboda, P., and Šmelcer, L. (2010) Relativistic apsidal motion in eccentric eclipsing binaries. A&A, 509, A18. https://doi.org/10.1051/0004-6361/200911671.
Wolf, M., Kučáková, H., Kolasa, M., Štastný, P., Bozkurt, Z., Harmanec, P., Zejda, M., Brát, L., and Hornoch, K. (2006) Apsidal motion in eccentric eclipsing binaries: CW Cephei, V478 Cygni, AG Persei, and IQ Persei. A&A, 456(3), 1077–1083. https://doi.org/10.1051/0004-6361:20065327.
Wolf, M., Zejda, M., and de Villiers, S. N. (2008) Apsidal motion in southern eccentric eclipsing binaries: GL Car, QX Car, NO Pup and V366 Pup. MNRAS, 388(4), 1836–1842. https://doi.org/10.1111/j.1365-2966.2008.13527.x.
Zasche, P. and Wolf, M. (2019) Apsidal motion and absolute parameters of 21 early-type Small Magellanic Cloud eccentric eclipsing binaries. AJ, 157(2), 87. https://doi.org/10.3847/1538-3881/aafc31.
Zasche, P., Wolf, M., Kučáková, H., Kára, J., Merc, J., Zejda, M., Skarka, M., Janík, J., and Kurfürst, P. (2020) First apsidal motion and light curve analysis of 162 eccentric eclipsing binaries from LMC. A&A, 640, A33. https://doi.org/10.1051/0004-6361/202037822.
Pour citer cet article
A propos de : Sophie Rosu
email : srosu@kth.se