- Accueil
- Volume 93 - Année 2024
- No 3 - 41st Liège International Astrophysical Coll...
- Solving the Mystery of Extreme Light Variability in the Massive Eccentric System MACHO 80.7443.1718
Visualisation(s): 39 (3 ULiège)
Téléchargement(s): 0 (0 ULiège)
Solving the Mystery of Extreme Light Variability in the Massive Eccentric System MACHO 80.7443.1718
Document(s) associé(s)
Version PDF originaleAbstract
The evolution of massive stars is heavily influenced by their binarity, and the massive eccentric binary system MACHO 80.7443.1718 (ExtEV) serves as a prime example. This study explores whether the light variability of ExtEV, observed near the periastron during its 32.8-day orbit, can be explained by a wind–wind collision (WWC) model and reviews other potential explanations. Using broadband photometry, TESS data, ground-based UBV time-series photometry, and high- resolution spectroscopy, we analysed the system’s parameters. We ruled out the presence of a Keplerian disk and periodic Roche-lobe overflow. Our analysis suggests the primary component has a radius of about 30 R⊙, luminosity of ∼6.6×105 L⊙, and mass between 25 and 45 M⊙, with a high wind mass-loss rate of 4.5×10−5 M⊙ yr−1, likely enhanced by tidal interactions, rotation, and tidally excited oscillations. We successfully modelled ExtEV’s light curve, identifying atmospheric eclipse and light scattering in the WWC cone as key contributors. The system’s mass-loss rate exceeds theoretical predictions, indicating that ExtEV is in a rare evolutionary phase, offering insights into enhanced mass loss in massive binary systems.
This work is distributed under the Creative Commons CC BY 4.0 Licence.
Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.
Bibliographie
Barclay, K. D. G., Rosu, S., Richardson, N. D., Chené, A.-N., St-Louis, N., Ignace, R., and Moffat, A. F. J. (2024) Using CHIRON spectroscopy to test the hypothesis of a precessing orbit for the WN4 star EZ CMa. MNRAS, 527(2), 2198–2208. https://doi.org/10.1093/mnras/stad3289.
Baroch, D., Giménez, A., Morales, J. C., Ribas, I., Herrero, E., Perdelwitz, V., Jordi, C., Granzer, T., and Allende Prieto, C. (2022) Absolute dimensions and apsidal motion of the eclipsing binaries V889 Aquilae and V402 Lacertae. A&A, 665, A13. https://doi.org/10.1051/0004-6361/202244287.
Baroch, D., Giménez, A., Ribas, I., Morales, J. C., Anglada-Escudé, G., and Claret, A. (2021) Analysis of apsidal motion in eclipsing binaries using TESS data. I. A test of gravitational theories. A&A, 649, A64. https://doi.org/10.1051/0004-6361/202040004.
Claret, A. (2023) Theoretical tidal evolution constants for stellar models from the pre-main sequence to the white dwarf stage. Apsidal motion constants, moment of inertia, and gravitational potential energy. A&A, 674, A67. https://doi.org/10.1051/0004-6361/202346250.
Claret, A., Giménez, A., Baroch, D., Ribas, I., Morales, J. C., and Anglada-Escudé, G. (2021) Analysis of apsidal motion in eclipsing binaries using TESS data. II. A test of internal stellar structure. A&A, 654, A17. https://doi.org/10.1051/0004-6361/202141484.
Eggenberger, P., Meynet, G., Maeder, A., Hirschi, R., Charbonnel, C., Talon, S., and Ekström, S. (2008) The Geneva stellar evolution code. Ap&SS, 316(1-4), 43–54. https://doi.org/10.1007/s10509-007-9511-y.
Fellay, L. and Dupret, M.-A. (2023) MoBiDICT: New 3D static models of close synchronised binaries in hydrostatic equilibrium. A&A, 676, A22. https://doi.org/10.1051/0004-6361/202346175.
Fellay, L., Dupret, M.-A., and Rosu, S. (2024) Underestimation of the tidal force and apsidal motion in close binary systems by the perturbative approach: Comparisons with non-perturbative models. A&A, 683, A210. https://doi.org/10.1051/0004-6361/202348134.
Giménez, A. and Bastero, M. (1995) A revision of the ephemeris–curve equations for eclipsing binaries with apsidal motion. Ap&SS, 226(1), 99–107. https://doi.org/10.1007/BF00626903.
Harmanec, P., Holmgren, D. E., Wolf, M., Božić, H., Guinan, E. F., Kang, Y. W., Mayer, P., McCook, G. P., Nemravová, J., Yang, S., Šlechta, M., Ruždjak, D., Sudar, D., and Svoboda, P. (2014) Revised physical elements of the astrophysically important O9.5+O9.5V eclipsing binary system Y Cygni. A&A, 563, A120. https://doi.org/10.1051/0004-6361/201323230.
Hejlesen, P. M. (1987) Studies in stellar evolution. III. The internal structure constants. A&AS, 69(2), 251–262. https://ui.adsabs.harvard.edu/abs/1987A&AS...69..251H.
Hill, G., Crawford, D. L., and Barnes, J. V. (1974) Some new spectroscopic binary orbits in NGC 6231 and Sco OB1. AJ, 79, 1271–1279. https://doi.org/10.1086/111672.
Hong, K., Lee, J. W., Kim, S.-L., Koo, J.-R., and Lee, C.-U. (2016) Apsidal motions of 90 eccentric binary systems in the Small Magellanic Cloud. MNRAS, 460(1), 650–663. https://doi.org/10.1093/mnras/stw955.
Lacy, C. H. S., Torres, G., Fekel, F. C., Muterspaugh, M. W., and Southworth, J. (2015) Absolute properties of the eclipsing binary star IM Persei. AJ, 149(1), 34. https://doi.org/10.1088/0004-6256/149/1/34.
Marcussen, M. L. and Albrecht, S. H. (2022) The BANANA Project. VI. Close double stars are well aligned with noticeable exceptions; results from an ensemble study using apsidal motion and Rossiter–McLaughlin measurements. ApJ, 933(2), 227. https://doi.org/10.3847/1538-4357/ac75c2.
Penny, L. R., Gies, D. R., and Bagnuolo, W. G., Jr. (1999) Tomographic separation of composite spectra. VI. The physical properties of the massive close binary HD 152248. ApJ, 518(1), 450–456. https://doi.org/10.1086/307263.
Rauw, G., Rosu, S., Noels, A., Mahy, L., Schmitt, J. H. M. M., Godart, M., Dupret, M.-A., and Gosset, E. (2016) Apsidal motion in the massive binary HD 152218. A&A, 594, A33. https://doi.org/10.1051/0004-6361/201628766.
Rosu, S. (2021) What apsidal motion reveals about the interior of massive binary stars. BSRSL, 90(1), 1–16. https://doi.org/10.25518/0037-9565.10017.
Rosu, S. (2022) Apsidal Motion in O-Star Binaries: Constraining the Internal Structure of the Stars. Ph.D. thesis, Université de Liège [Sciences], Liège (BE). https://hdl.handle.net/2268/292652.
Rosu, S., Fellay, L., Rauw, G., and Dupret, M.-A. (in press) Apsidal motion in (massive) binaries. Central European Astrophysical Bulletin.
Rosu, S., Noels, A., Dupret, M.-A., Rauw, G., Farnir, M., and Ekström, S. (2020a) Apsidal motion in the massive binary HD 152248: Constraining the internal structure of the stars. A&A, 642, A221. https://doi.org/10.1051/0004-6361/202038380.
Rosu, S., Quintero, E. A., Rauw, G., and Eenens, P. (2023) New insight into the massive eccentric binary HD 165052: self-consistent orbital solution, apsidal motion, and fundamental parameters. MNRAS, 521(2), 2988–3003. https://doi.org/10.1093/mnras/stad780.
Rosu, S., Rauw, G., Conroy, K. E., Gosset, E., Manfroid, J., and Royer, P. (2020b) Apsidal motion in the massive binary HD 152248. A&A, 635, A145. https://doi.org/10.1051/0004-6361/201937285.
Rosu, S., Rauw, G., Farnir, M., Dupret, M.-A., and Noels, A. (2022a) Apsidal motion in massive eccentric binaries in NGC 6231: The case of HD 152219. A&A, 660, A120. https://doi.org/10.1051/0004-6361/202141304.
Rosu, S., Rauw, G., Nazé, Y., Gosset, E., and Sterken, C. (2022b) Apsidal motion in massive eccentric binaries: The case of CPD-41° 7742, and HD 152218 revisited. A&A, 664, A98. https://doi.org/10.1051/0004-6361/202243707.
Scuflaire, R., Théado, S., Montalbán, J., Miglio, A., Bourge, P.-O., Godart, M., Thoul, A., and Noels, A. (2008) CLÉS, Code Liégeois d’Évolution Stellaire. Ap&SS, 316(1-4), 83–91. https://doi.org/10.1007/s10509-007-9650-1.
Shakura, N. I. (1985) On the apsidal motion in binary stars. SvAL, 11, 224–226. https://ui.adsabs.harvard.edu/abs/1985SvAL...11..224S.
Sterne, T. E. (1939) Apsidal motion in binary stars. MNRAS, 99(5), 451–462. https://doi.org/10.1093/mnras/99.5.451.
Struve, O. (1944) Radial velocities of twenty stars of early type in and near the galactic cluster NGC 6231. ApJ, 100, 189–201. https://doi.org/10.1086/144657.
Torres, G., Andersen, J., and Giménez, A. (2010) Accurate masses and radii of normal stars: modern results and applications. A&AR, 18(1-2), 67–126. https://doi.org/10.1007/s00159-009-0025-1.
Wolf, M., Claret, A., Kotková, L., Kučáková, H., Kocián, R., Brát, L., Svoboda, P., and Šmelcer, L. (2010) Relativistic apsidal motion in eccentric eclipsing binaries. A&A, 509, A18. https://doi.org/10.1051/0004-6361/200911671.
Wolf, M., Kučáková, H., Kolasa, M., Štastný, P., Bozkurt, Z., Harmanec, P., Zejda, M., Brát, L., and Hornoch, K. (2006) Apsidal motion in eccentric eclipsing binaries: CW Cephei, V478 Cygni, AG Persei, and IQ Persei. A&A, 456(3), 1077–1083. https://doi.org/10.1051/0004-6361:20065327.
Wolf, M., Zejda, M., and de Villiers, S. N. (2008) Apsidal motion in southern eccentric eclipsing binaries: GL Car, QX Car, NO Pup and V366 Pup. MNRAS, 388(4), 1836–1842. https://doi.org/10.1111/j.1365-2966.2008.13527.x.
Zasche, P. and Wolf, M. (2019) Apsidal motion and absolute parameters of 21 early-type Small Magellanic Cloud eccentric eclipsing binaries. AJ, 157(2), 87. https://doi.org/10.3847/1538-3881/aafc31.
Zasche, P., Wolf, M., Kučáková, H., Kára, J., Merc, J., Zejda, M., Skarka, M., Janík, J., and Kurfürst, P. (2020) First apsidal motion and light curve analysis of 162 eccentric eclipsing binaries from LMC. A&A, 640, A33. https://doi.org/10.1051/0004-6361/202037822.
Pour citer cet article
A propos de : Piotr A. Kołaczek-Szymański
Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du Six-Août 19c, Bât. B5c, 4000 Liège, Belgium
eMail : piotr.kolaczek-szymanski@uwr.edu.pl
A propos de : Piotr Łojko
A propos de : Andrzej Pigulski
A propos de : Tomasz Różański
Australian National University, Research School of Astronomy & Astrophysics, Cotter Rd., Weston, ACT 2611, Australia