- Home
- Volume 93 - Année 2024
- No 3 - 41st Liège International Astrophysical Coll...
- Runaway O and Be Stars Found Using Gaia DR3, New Stellar Bow Shocks and Search for Binaries
View(s): 29 (4 ULiège)
Download(s): 0 (0 ULiège)
Runaway O and Be Stars Found Using Gaia DR3, New Stellar Bow Shocks and Search for Binaries
Attached document(s)
original pdf fileAbstract
A relevant fraction of massive stars are runaways, moving with a significant peculiar velocity with respect to their environment. Kicks from supernova explosions or the dynamical ejection of stars from clusters can account for the runaway genesis. We have used Gaia DR3 data to study the velocity distribution of massive O and Be stars from the GOSC and BeSS catalogs and identify runaway stars using a 2D-velocity method. We have discovered 42 new runaways from GOSC and 47 from BeSS, among a total of 106 and 69 runaways found within these catalogs, respectively. These numbers imply a percentage of runaways of ∼25% for O-type stars ∼5% for Be-type stars. The higher percentages and higher velocities found for O-type compared to Be-type runaways suggest that the dynamical ejection scenario is more likely than the supernova explosion scenario. We have also performed multi-wavelength studies of our runaways. We have used WISE infrared images to discover 13 new stellar bow shocks around the runaway stars. We have also conducted VLA radio observations of some of these bow shocks. Finally, our runaway stars include six X-ray binaries and one gamma-ray binary, implying that new such systems could be found by conducting detailed multi-wavelength studies. In this work we report on this ongoing project to find new runaway stars, study their interaction with the ISM and search for high-energy binary systems.
This work is distributed under the Creative Commons CC BY 4.0 Licence.
Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.
Bibliographie
Ayan-Míguez, I. and Ribó, M. (2019) Searching for gamma-ray binaries using GOSC and Gaia DR2. In High Energy Phenomena in Relativistic Outflows VII (HEPRO VII), Proceedings of Science, volume 354. Sissa Medialab. https://doi.org/10.22323/1.354.0095.
Benaglia, P., Romero, G. E., Martí, J., Peri, C. S., and Araudo, A. T. (2010) Detection of nonthermal emission from the bow shock of a massive runaway star. A&A, 517, L10. https://doi.org/10.1051/0004-6361/201015232.
Blaauw, A. (1961) On the origin of the O- and B-type stars with high velocities (the “run-away” stars), and some related problems. BAN, 15, 265–290. https://ui.adsabs.harvard.edu/abs/1961BAN....15..265B.
Boubert, D. and Evans, N. W. (2018) On the kinematics of a runaway Be star population. MNRAS, 477(4), 5261–5278. https://doi.org/10.1093/mnras/sty980.
Britavskiy, N., Simón-Díaz, S., Holgado, G., Burssens, S., Maíz Apellániz, J., Eldridge, J. J., Nazé, Y., Pantaleoni González, M., and Herrero, A. (2023) The IACOB project. VIII. Searching for empirical signatures of binarity in fast-rotating O-type stars. A&A, 672, A22. https://doi.org/10.1051/0004-6361/202245145.
Carretero-Castrillo, M., Ribó, M., and Paredes, J. M. (2023a) Galactic runaway O and Be stars found using Gaia DR3. A&A, 679, A109. https://doi.org/10.1051/0004-6361/202346613.
Carretero-Castrillo, M., Ribó, M., and Paredes, J. M. (2023b) Search for new gamma-ray binaries among runaway stars. In 7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy (Gamma2022), Proceedings of Science, volume 417. Sissa Medialab, Trieste (IT). https://doi.org/10.22323/1.417.0133.
Chini, R., Hoffmeister, V. H., Nasseri, A., Stahl, O., and Zinnecker, H. (2012) A spectroscopic survey on the multiplicity of high-mass stars: Multiplicity of high-mass stars. MNRAS, 424(3), 1925–1929. https://doi.org/10.1111/j.1365-2966.2012.21317.x.
Comerón, F. and Pasquali, A. (2007) A very massive runaway star from Cygnus OB2. A&A, 467(1), L23–L27. https://doi.org/10.1051/0004-6361:20077304.
Dorigo Jones, J., Oey, M. S., Paggeot, K., Castro, N., and Moe, M. (2020) Runaway OB stars in the Small Magellanic Cloud: Dynamical versus supernova ejections. ApJ, 903(1), 43. https://doi.org/10.3847/1538-4357/abbc6b.
Dubus, G. (2013) Gamma-ray binaries and related systems. A&ARv, 21, 64. https://doi.org/10.1007/s00159-013-0064-5.
Gaia Collaboration: Prusti, T., de Bruijne, J. H. J., Brown, A. G. A., Vallenari, A., Babusiaux, C., Bailer-Jones, C. A. L., Bastian, U., Biermann, M., Evans, D. W., Eyer, L., and 615 more (2016) The Gaia mission. A&A, 595, A1. https://doi.org/10.1051/0004-6361/201629272.
Gaia Collaboration: Vallenari, A., Brown, A. G. A., Prusti, T., de Bruijne, J. H. J., Arenou, F., Babusiaux, C., Biermann, M., Creevey, O. L., Ducourant, C., Evans, D. W., and 445 more (2023) Gaia Data Release 3: Summary of the content and survey properties. A&A, 674, A1. https://doi.org/10.1051/0004-6361/202243940.
Holgado, G., Simón-Díaz, S., Herrero, A., and Barbá, R. H. (2022) The IACOB project. VII. The rotational properties of Galactic massive O-type stars revisited. A&A, 665, A150. https://doi.org/10.1051/0004-6361/202243851.
Johnson, D. R. H. and Soderblom, D. R. (1987) Calculating Galactic space velocities and their uncertainties, with an application to the Ursa Major group. AJ, 93, 864–867. https://doi.org/10.1086/114370.
Kobulnicky, H. A. and Chick, W. T. (2022) Kinematics of the central stars powering bowshock nebulae and the large multiplicity fraction of runaway OB stars. AJ, 164(3), 86. https://doi.org/10.3847/1538-3881/ac7f2b.
Lamb, J. B., Oey, M. S., Segura-Cox, D. M., Graus, A. S., Kiminki, D. C., Golden-Marx, J. B., and Parker, J. W. (2016) The Runaways and Isolated O-type Star Spectroscopic Survey of the SMC (RIOTS4). ApJ, 817(2), 113. https://doi.org/10.3847/0004-637X/817/2/113.
Maíz Apellániz, J. (2022) An estimation of the Gaia EDR3 parallax bias from stellar clusters and Magellanic Clouds data. A&A, 657, A130. https://doi.org/10.1051/0004-6361/202142365.
Maíz Apellániz, J., Pantaleoni González, M., Barbá, R. H., Simón-Díaz, S., Negueruela, I., Lennon, D. J., Sota, A., and Trigueros Páez, E. (2018) Search for Galactic runaway stars using Gaia Data Release 1 and HIPPARCOS proper motions. A&A, 616, A149. https://doi.org/10.1051/0004-6361/201832787.
Maíz Apellániz, J., Sota, A., Morrell, N. I., Barbá, R. H., Walborn, N. R., Alfaro, E. J., Gamen, R. C., Arias, J. I., and Gallego Calvente, A. T. (2013) The Galactic O-star Spectroscopic Catalog (GOSC) and Survey (GOSSS): first whole-sky results and further updates. In Massive Stars: From α to Ω. https://ui.adsabs.harvard.edu/abs/2013msao.confE.198M.
Marchant, P. and Bodensteiner, J. (2024) The evolution of massive binary stars. ARA&A, 62, 21–61. https://doi.org/10.1146/annurev-astro-052722-105936.
Moutzouri, M., Mackey, J., Carrasco-González, C., Gong, Y., Brose, R., Zargaryan, D., Toalá, J. A., Menten, K. M., Gvaramadze, V. V., and Rugel, M. R. (2022) And then they were two: Detection of non-thermal radio emission from the bow shocks of two runaway stars. A&A, 663, A80. https://doi.org/10.1051/0004-6361/202243098.
Neiner, C., de Batz, B., Cochard, F., Floquet, M., Mekkas, A., and Desnoux, V. (2011) The Be Star Spectra (BeSS) database. AJ, 142(5), 149. https://doi.org/10.1088/0004-6256/142/5/149.
Pflamm-Altenburg, J. and Kroupa, P. (2010) The two-step ejection of massive stars and the issue of their formation in isolation. MNRAS. https://doi.org/10.1111/j.1365-2966.2010.16376.x.
Poveda, A., Ruiz, J., and Allen, C. (1967) Run-away stars as the result of the gravitational collapse of proto-stellar clusters. BOTT, 4(28), 86–90.
Reid, M. J., Menten, K. M., Brunthaler, A., Zheng, X. W., Dame, T. M., Xu, Y., Li, J., Sakai, N., Wu, Y., Immer, K., Zhang, B., Sanna, A., Moscadelli, L., Rygl, K. L. J., Bartkiewicz, A., Hu, B., Quiroga-Nuñez, L. H., and van Langevelde, H. J. (2019) Trigonometric parallaxes of high-mass star-forming regions: Our view of the Milky Way. ApJ, 885(2), 131. https://doi.org/10.3847/1538-4357/ab4a11.
Rivinius, T., Carciofi, A. C., and Martayan, C. (2013) Classical Be stars: Rapidly rotating B stars with viscous Keplerian decretion disks. A&ARv, 21, 69. https://doi.org/10.1007/s00159-013-0069-0.
Sana, H., de Mink, S. E., de Koter, A., Langer, N., Evans, C. J., Gieles, M., Gosset, E., Izzard, R. G., Le Bouquin, J.-B., and Schneider, F. R. N. (2012) Binary interaction dominates the evolution of massive stars. Sci, 337, 444–446. https://doi.org/10.1126/science.1223344.
Sana, H., Ramírez-Agudelo, O. H., Hénault-Brunet, V., Mahy, L., Almeida, L. A., de Koter, A., Bestenlehner, J. M., Evans, C. J., Langer, N., Schneider, F. R. N., Crowther, P. A., de Mink, S. E., Herrero, A., Lennon, D. J., Gieles, M., Maíz Apellániz, J., Renzo, M., Sabbi, E., van Loon, J. T., and Vink, J. S. (2022) The VLT-FLAMES Tarantula Survey: Observational evidence for two distinct populations of massive runaway stars in 30 Doradus. A&A, 668, L5. https://doi.org/10.1051/0004-6361/202244677.
Slettebak, A. (1988) The Be stars. PASP, 100, 770–784. https://doi.org/10.1086/132234.
Stone, R. C. (1979) Kinematics, close binary evolution, and ages of the O stars. ApJ, 232, 520–530. https://doi.org/10.1086/157311.
Stone, R. C. (1991) The space frequency and origin of the runaway O and B stars. AJ, 102, 333–349. https://doi.org/10.1086/115880.
Tetzlaff, N., Neuhäuser, R., and Hohle, M. M. (2011) A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun. MNRAS, 410(1), 190–200. https://doi.org/10.1111/j.1365-2966.2010.17434.x.
van den Eijnden, J., Heywood, I., Fender, R., Mohamed, S., Sivakoff, G. R., Saikia, P., Russell, T. D., Motta, S., Miller-Jones, J. C. A., and Woudt, P. A. (2022) MeerKAT discovery of radio emission from the Vela X-1 bow shock. MNRAS, 510(1), 515–530. https://doi.org/10.1093/mnras/stab3395.
Van den Eijnden, J., Saikia, P., and Mohamed, S. (2022) Radio detections of IR-selected runaway stellar bow shocks. MNRAS, 512(4), 5374–5389. https://doi.org/10.1093/mnras/stac823.
Vanbeveren, D., De Loore, C., and Van Rensbergen, W. (1998) Massive stars. A&ARv, 9(1-2), 63–152. https://doi.org/10.1007/s001590050015.
Wilkin, F. P. (1996) Exact analytic solutions for stellar wind bow shocks. ApJ, 459(1). https://doi.org/10.1086/309939.
Woosley, S. and Bloom, J. (2006) The supernova–gamma-ray burst connection. ARA&A, 44, 507–556. https://doi.org/10.1146/annurev.astro.43.072103.150558.
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., Ressler, M. E., Cutri, R. M., Jarrett, T., Kirkpatrick, J. D., Padgett, D., McMillan, R. S., Skrutskie, M., Stanford, S. A., Cohen, M., Walker, R. G., Mather, J. C., Leisawitz, D., Gautier, T. N., McLean, I., Benford, D., Lonsdale, C. J., Blain, A., Mendez, B., Irace, W. R., Duval, V., Liu, F., Royer, D., Heinrichsen, I., Howard, J., Shannon, M., Kendall, M., Walsh, A. L., Larsen, M., Cardon, J. G., Schick, S., Schwalm, M., Abid, M., Fabinsky, B., Naes, L., and Tsai, C.-W. (2010) The Wide-field Infrared Survey Explorer (WISE): Mission description and initial on-orbit performance. AJ, 140(6), 1868–1881. https://doi.org/10.1088/0004-6256/140/6/1868.
To cite this article
About: Mar Carretero-Castrillo
Serra Húnter Fellow
email : mribo@fqa.ub.edu