depuis le 05 février 2011 :
Visualisation(s): 30 (5 ULiège)
Téléchargement(s): 0 (0 ULiège)
print        
Gregor Rauw

Caught in flagrante delicto: Evidence for Past Mass Transfer in Massive Binaries?

(Volume 93 - Année 2024 — No 3 - 41st Liège International Astrophysical Colloquium)
Article
Open Access

Document(s) associé(s)

Version PDF originale

Résumé

Beaucoup de systèmes binaires massifs traversent des épisodes de transfert de masse et de moment angulaire au cours de leur évolution. Ce type d’interaction affecte les propriétés des deux étoiles (donneur de masse et accréteur) et devrait imprégner plusieurs signatures observationnelles. Parmi les indices les plus probants d’un épisode passé d’échange de matière, il y a la rotation rapide de l’accréteur et la composition chimique altérée du donneur de masse. Des études observationnelles quantitatives de binaires massives évoluées sont cruciales pour contraindre certains paramètres clés des modèles d’évolution, tels que la fraction de la matière perdue par le donneur qui est effectivement accrétée par le compagnon. Toutefois, ce type d’étude requiert une analyse en profondeur de tous les aspects d’un système binaire, ce qui conduit parfois à des résultats inattendus. Dans cette contribution, nous passons en revue les indices observationnels d’épisodes passés d’échanges de masse dans des binaires massives de la séquence principale ou ayant quitté celle-ci récemment.

Mots-clés : étoiles massives, binaires serrées, étoiles: abondances, étoiles: évolution, étoiles: rotation

Abstract

Many massive binary systems undergo mass and angular momentum transfer over the course of their evolution. This kind of interaction is expected to deeply affect the properties of the mass donor and mass gainer and to leave various observational signatures. The most common smoking guns of a past mass transfer episode are notably rapid rotation of the mass gainer and altered surface chemical abundances of the stripped mass donor star. Quantitative observational studies of evolved massive binaries are crucial to gain insight into poorly constrained parameters of binary evolution models such as the fraction of mass lost by the mass donor that is actually accreted by the mass gainer. Yet, drawing conclusions about a past mass transfer episode requires a detailed analysis of all aspects of a binary system which sometimes leads to unexpected results. In this contribution, we review the existing observational evidence for past mass exchange events in massive main-sequence and post main-sequence binaries.

Keywords : stars: early-type, binaries: close, stars: abundances, stars: evolution, stars: rotation

This work is distributed under the Creative Commons CC BY 4.0 Licence.

Paper presented at the 41st Liège International Astrophysical Colloquium on “The eventful life of massive star multiples,” University of Liège (Belgium), 15–19 July 2024.

Bibliographie

Abdul-Masih, M., Sana, H., Hawcroft, C., Almeida, L. A., Brands, S. A., de Mink, S. E., Justham, S., Langer, N., Mahy, L., Marchant, P., Menon, A., Puls, J., and Sundqvist, J. (2021) Constraining the overcontact phase in massive binary evolution. I. Mixing in V382 Cyg, VFTS 352, and OGLE SMC-SC10 108086. A&A, 651, A96. https://doi.org/10.1051/0004-6361/202040195.

Antokhina, E. A., Srinivasa Rao, M., and Parthasarathy, M. (2011) Light curve analysis of Hipparcos data for the massive O-type eclipsing binary UW CMa. NewA, 16(3), 177–182. https://doi.org/10.1016/j.newast.2010.09.008.

Bagnuolo, W. G., Jr., Gies, D. R., Hahula, M. E., Wiemker, R., and Wiggs, M. S. (1994) Tomographic separation of composite spectra. II. The components of 29 UW Canis Majoris. ApJ, 423, 446–455. https://doi.org/10.1086/173822.

Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M., and Andrae, R. (2021) Estimating distances from parallaxes. V. Geometric and photogeometric distances to 1.47 billion stars in Gaia Early Data Release 3. AJ, 161(3), 147. https://doi.org/10.3847/1538-3881/abd806.

Britavskiy, N., Renzo, M., Nazé, Y., Rauw, G., and Vynatheya, P. (2024) Tracing the evolution of short-period binaries with super-synchronous fast rotators. A&A, 684, A35. https://doi.org/10.1051/0004-6361/202348484.

Britavskiy, N., Simón-Díaz, S., Holgado, G., Burssens, S., Maíz Apellániz, J., Eldridge, J. J., Nazé, Y., Pantaleoni González, M., and Herrero, A. (2023) The IACOB project. VIII. Searching for empirical signatures of binarity in fast-rotating O-type stars. A&A, 672, A22. https://doi.org/10.1051/0004-6361/202245145.

Cazorla, C., Morel, T., Nazé, Y., Rauw, G., Semaan, T., Daflon, S., and Oey, M. S. (2017a) Chemical abundances of fast-rotating massive stars. I. Description of the methods and individual results. A&A, 603, A56. https://doi.org/10.1051/0004-6361/201629841.

Cazorla, C., Nazé, Y., Morel, T., Georgy, C., Godart, M., and Langer, N. (2017b) Chemical abundances of fast-rotating massive stars . II. ınterpretation and comparison with evolutionary models. A&A, 604, A123. https://doi.org/10.1051/0004-6361/201730680.

Chen, X., Liu, Z., and Han, Z. (2024) Binary stars in the new millennium. Progress in Particle and Nuclear Physics, 134, 104083. https://doi.org/10.1016/j.ppnp.2023.104083.

De Loore, C. and Vanbeveren, D. (1994) Massive close binary evolution in the Galaxy and in the Magellanic Clouds. A&A, 292(2), 463–470. https://ui.adsabs.harvard.edu/abs/1994A&A...292..463D.

de Mink, S. E., Langer, N., Izzard, R. G., Sana, H., and de Koter, A. (2013) The rotation rates of massive stars: The role of binary interaction through tides, mass transfer, and mergers. ApJ, 764(2), 166. https://doi.org/10.1088/0004-637X/764/2/166.

de Mink, S. E., Sana, H., Langer, N., Izzard, R. G., and Schneider, F. R. N. (2014) The incidence of stellar mergers and mass gainers among massive stars. ApJ, 782(1), 7. https://doi.org/10.1088/0004-637X/782/1/7.

Dufton, P. L., Langer, N., Dunstall, P. R., Evans, C. J., Brott, I., de Mink, S. E., Howarth, I. D., Kennedy, M., McEvoy, C., Potter, A. T., Ramírez-Agudelo, O. H., Sana, H., Simón-Díaz, S., Taylor, W., and Vink, J. S. (2013) The VLT-FLAMES Tarantula Survey. X. Evidence for a bimodal distribution of rotational velocities for the single early B-type stars. A&A, 550, A109. https://doi.org/10.1051/0004-6361/201220273.

Eggenberger, P., Ekström, S., Georgy, C., Martinet, S., Pezzotti, C., Nandal, D., Meynet, G., Buldgen, G., Salmon, S., Haemmerlé, L., Maeder, A., Hirschi, R., Yusof, N., Groh, J., Farrell, E., Murphy, L., and Choplin, A. (2021) Grids of stellar models with rotation. VI. Models from 0.8 to 120 M at a metallicity Z = 0.006. A&A, 652, A137. https://doi.org/10.1051/0004-6361/202141222.

Eker, Z., Bilir, S., Soydugan, F., Gökçe, E. Y., Soydugan, E., Tüysüz, M., Şenyüz, T., and Demircan, O. (2014) The catalogue of stellar parameters from the detached double–lined eclipsing binaries in the Milky Way. PASA, 31, e024. https://doi.org/10.1017/pasa.2014.17.

Ekström, S., Georgy, C., Eggenberger, P., Meynet, G., Mowlavi, N., Wyttenbach, A., Granada, A., Decressin, T., Hirschi, R., Frischknecht, U., Charbonnel, C., and Maeder, A. (2012) Grids of stellar models with rotation. I. Models from 0.8 to 120 M at solar metallicity (Z = 0.014). A&A, 537, A146. https://doi.org/10.1051/0004-6361/201117751.

Ekström, S., Georgy, C., Meynet, G., Maeder, A., and Granada, A. (2011) Massive stellar models: rotational evolution, metallicity effects. Proceedings of the International Astronomical Union, 6(S272), 62–72. https://doi.org/10.1017/S1743921311009987.

El-Badry, K., Conroy, C., Quataert, E., Rix, H.-W., Labadie-Bartz, J., Jayasinghe, T., Thompson, T., Cargile, P., Stassun, K. G., and Ilyin, I. (2022) Birth of a Be star: an APOGEE search for Be stars forming through binary mass transfer. MNRAS, 516(3), 3602–3630. https://doi.org/10.1093/mnras/stac2422.

Freyhammer, L. M., Clausen, J. V., Arentoft, T., and Sterken, C. (2001) On the eclipsing nature of CPD–59°2628. A&A, 369(2), 561–573. https://doi.org/10.1051/0004-6361:20010194.

Frost, A. J., Sana, H., Mahy, L., Wade, G., Barron, J., Le Bouquin, J.-B., Mérand, A., Schneider, F. R. N., Shenar, T., Barbá, R. H., Bowman, D. M., Fabry, M., Farhang, A., Marchant, P., Morrell, N. I., and Smoker, J. V. (2024) A magnetic massive star has experienced a stellar merger. Sci, 384, 214–217. https://doi.org/10.1126/science.adg7700.

Gies, D. R., Shepard, K., Wysocki, P., and Klement, R. (2022) The transformative journey of HD 93521. AJ, 163(2), 100. https://doi.org/10.3847/1538-3881/ac43be.

Götberg, Y., de Mink, S. E., Groh, J. H., Kupfer, T., Crowther, P. A., Zapartas, E., and Renzo, M. (2018) Spectral models for binary products: Unifying subdwarfs and Wolf–Rayet stars as a sequence of stripped–envelope stars. A&A, 615, A78. https://doi.org/10.1051/0004-6361/201732274.

Grunhut, J. H., Wade, G. A., Folsom, C. P., Neiner, C., Kochukhov, O., Alecian, E., Shultz, M., and Petit, V. (2022) The magnetic field and magnetosphere of Plaskett’s star: a fundamental shift in our understanding of the system. MNRAS, 512(2), 1944–1966. https://doi.org/10.1093/mnras/stab3320.

Grunhut, J. H., Wade, G. A., Leutenegger, M., Petit, V., Rauw, G., Neiner, C., Martins, F., Cohen, D. H., Gagne, M., Ignace, R., Mathis, S., de Mink, S. E., Moffat, A. F. J., Owocki, S., Shultz, M., Sundqvist, J., and the MiMeS Collaboration (2013) Discovery of a magnetic field in the rapidly rotating O-type secondary of the colliding-wind binary HD 47129 (Plaskett’s star). MNRAS, 428(2), 1686–1695. https://doi.org/10.1093/mnras/sts153.

Harries, T. J., Hilditch, R. W., and Hill, G. (1997) Interacting O-star binaries: V382 Cyg, V448 Cyg and XZ Cep. MNRAS, 285(2), 277–287. https://doi.org/10.1093/mnras/285.2.277.

Holgado, G., Simón-Díaz, S., Herrero, A., and Barbá, R. H. (2022) The IACOB project. VII. The rotational properties of Galactic massive O-type stars revisited. A&A, 665, A150. https://doi.org/10.1051/0004-6361/202243851.

Hubrig, S., Järvinen, S. P., Ilyin, I., Schöller, M., and Jayaraman, R. (2023) Are magnetic fields universal in O-type multiple systems? MNRAS, 521(4), 6228–6246. https://doi.org/10.1093/mnras/stad730.

Kippenhahn, R. and Weigert, A. (1967) Entwicklung in engen Doppelsternsystemen. I. Massenaustausch vor und nach Beendigung des zentralen Wasserstoff–Brennens. ZA, 65, 251–273. https://ui.adsabs.harvard.edu/abs/1967ZA.....65..251K.

Langer, N., Schürmann, C., Stoll, K., Marchant, P., Lennon, D. J., Mahy, L., de Mink, S. E., Quast, M., Riedel, W., Sana, H., Schneider, P., Schootemeijer, A., Wang, C., Almeida, L. A., Bestenlehner, J. M., Bodensteiner, J., Castro, N., Clark, S., Crowther, P. A., Dufton, P., Evans, C. J., Fossati, L., Gräfener, G., Grassitelli, L., Grin, N., Hastings, B., Herrero, A., de Koter, A., Menon, A., Patrick, L., Puls, J., Renzo, M., Sander, A. A. C., Schneider, F. R. N., Sen, K., Shenar, T., Simón-Días, S., Tauris, T. M., Tramper, F., Vink, J. S., and Xu, X.-T. (2020) Properties of OB star–black hole systems derived from detailed binary evolution models. A&A, 638, A39. https://doi.org/10.1051/0004-6361/201937375.

Lim, B., Nazé, Y., Chang, S.-J., and Hutsemékers, D. (2024) A morphokinematic study of the enigmatic emission nebula NGC 6164/5 surrounding the magnetic O-type star HD 148937. ApJ, 961(1), 72. https://doi.org/10.3847/1538-4357/ad12c4.

Linder, N. (2008) A Multi-Wavelength Study of Interactions in O + O Binary Systems. Ph.D. thesis, University of Liège, Liège (BE).

Linder, N., Rauw, G., Martins, F., Sana, H., De Becker, M., and Gosset, E. (2008) High-resolution optical spectroscopy of Plaskett’s star. A&A, 489(2), 713–723. https://doi.org/10.1051/0004-6361:200810003.

Linder, N., Rauw, G., Sana, H., De Becker, M., and Gosset, E. (2007) The Struve–Sahade effect in the optical spectra of O-type binaries. I. Main-sequence systems. A&A, 474(1), 193–204. https://doi.org/10.1051/0004-6361:20077902.

Mahy, L., Almeida, L. A., Sana, H., Clark, J. S., de Koter, A., de Mink, S. E., Evans, C. J., Grin, N. J., Langer, N., Moffat, A. F. J., Schneider, F. R. N., Shenar, T., and Tramper, F. (2020a) The Tarantula Massive Binary Monitoring. IV. Double–lined photometric binaries. A&A, 634, A119. https://doi.org/10.1051/0004-6361/201936152.

Mahy, L., Gosset, E., Baudin, F., Rauw, G., Godart, M., Morel, T., Degroote, P., Aerts, C., Blomme, R., Cuypers, J., Noels, A., Michel, E., Baglin, A., Auvergne, M., Catala, C., and Samadi, R. (2011a) Plaskett’s star: analysis of the CoRoT photometric data. A&A, 525, A101. https://doi.org/10.1051/0004-6361/201014777.

Mahy, L., Hutsemékers, D., Nazé, Y., Royer, P., Lebouteiller, V., and Waelkens, C. (2017) Evolutionary status of the Of?p star HD 148937 and of its surrounding nebula NGC 6164/5. A&A, 599, A61. https://doi.org/10.1051/0004-6361/201629585.

Mahy, L., Martins, F., Machado, C., Donati, J.-F., and Bouret, J.-C. (2011b) The two components of the evolved massive binary LZ Cephei: Testing the effects of binarity on stellar evolution. A&A, 533, A9. https://doi.org/10.1051/0004-6361/201116993.

Mahy, L., Sana, H., Abdul-Masih, M., Almeida, L. A., Langer, N., Shenar, T., de Koter, A., de Mink, S. E., de Wit, S., Grin, N. J., Evans, C. J., Moffat, A. F. J., Schneider, F. R. N., Barbá, R., Clark, J. S., Crowther, P., Gräfener, G., Lennon, D. J., Tramper, F., and Vink, J. S. (2020b) The Tarantula Massive Binary Monitoring. III. Atmosphere analysis of double–lined spectroscopic systems. A&A, 634, A118. https://doi.org/10.1051/0004-6361/201936151.

Marchant, P. and Bodensteiner, J. (2024) The evolution of massive binary stars. ARA&A, 62, 21–61. https://doi.org/10.1146/annurev-astro-052722-105936.

Martins, F., Mahy, L., and Hervé, A. (2017) Properties of six short-period massive binaries: A study of the effects of binarity on surface chemical abundances. A&A, 607, A82. https://doi.org/10.1051/0004-6361/201731593.

Martins, F. and Palacios, A. (2013) A comparison of evolutionary tracks for single Galactic massive stars. A&A, 560, A16. https://doi.org/10.1051/0004-6361/201322480.

Martins, F. and Plez, B. (2006) UBVJHK synthetic photometry of Galactic O stars. A&A, 457(2), 637–644. https://doi.org/10.1051/0004-6361:20065753.

Martins, F., Simón-Díaz, S., Palacios, A., Howarth, I., Georgy, C., Walborn, N. R., Bouret, J.-C., and Barbá, R. (2015) Surface abundances of ON stars. A&A, 578, A109. https://doi.org/10.1051/0004-6361/201526130.

Massey, P., Penny, L. R., and Vukovich, J. (2002) Orbits of four very massive binaries in the R136 cluster. ApJ, 565(2), 982–993. https://doi.org/10.1086/324783.

Nazé, Y., Britavskiy, N., Rauw, G., Labadie-Bartz, J., and Simón-Díaz, S. (2023) Extreme mass ratios and fast rotation in three massive binaries. MNRAS, 525(2), 1641–1656. https://doi.org/10.1093/mnras/stad2280.

Nazé, Y., Neiner, C., Grunhut, J., Bagnulo, S., Alecian, E., Rauw, G., and Wade, G. A. (2017) How unique is Plaskett’s star? A search for organized magnetic fields in short period, interacting or post-interaction massive binary systems. MNRAS, page stx194. https://doi.org/10.1093/mnras/stx194.

Neiner, C., Mathis, S., Alecian, E., Emeriau, C., and Grunhut, J. (2015) The origin of magnetic fields in hot stars. Proceedings of the International Astronomical Union, 10(S305), 61–66. https://doi.org/10.1017/S1743921315004524.

Packet, W. (1981) On the spin-up of the mass accreting component in a close binary system. A&A, 102(1), 17–19. https://ui.adsabs.harvard.edu/abs/1981A&A...102...17P.

Palate, M. and Rauw, G. (2012) Spectral modelling of circular massive binary systems. Towards an understanding of the Struve–Sahade effect? A&A, 537, A119. https://doi.org/10.1051/0004-6361/201117520.

Palate, M. and Rauw, G. (2014) Short-term spectroscopic variability of Plaskett’s star. A&A, 572, A16. https://doi.org/10.1051/0004-6361/201423608.

Palate, M., Rauw, G., Koenigsberger, G., and Moreno, E. (2013) Spectral modelling of massive binary systems. A&A, 552, A39. https://doi.org/10.1051/0004-6361/201219754.

Pauli, D., Oskinova, L. M., Hamann, W.-R., Ramachandran, V., Todt, H., Sander, A. A. C., Shenar, T., Rickard, M., Maíz Apellániz, J., and Prinja, R. (2022) The earliest O-type eclipsing binary in the Small Magellanic Cloud, AzV 476: A comprehensive analysis reveals surprisingly low stellar masses. A&A, 659, A9. https://doi.org/10.1051/0004-6361/202141738.

Penny, L. R., Ouzts, C., and Gies, D. R. (2008) Tomographic separation of composite spectra. XI. The physical properties of the massive close binary HD 100213 (TU Muscae). ApJ, 681(1), 554–561. https://doi.org/10.1086/587509.

Podsiadlowski, Ph., Joss, P. C., and Hsu, J. J. L. (1992) Presupernova evolution in massive interacting binaries. ApJ, 391, 246. https://doi.org/10.1086/171341.

Putkuri, C., Gamen, R., Morrell, N. I., Simón-Díaz, S., Barbá, R. H., Ferrero, G. A., Arias, J. I., and Solivella, G. (2018) Non-synchronous rotations in massive binary systems. HD 93343 revisited. A&A, 618, A174. https://doi.org/10.1051/0004-6361/201833574.

Ramírez-Agudelo, O. H., Simón-Díaz, S., Sana, H., de Koter, A., Sabín-Sanjulían, C., de Mink, S. E., Dufton, P. L., Gräfener, G., Evans, C. J., Herrero, A., Langer, N., Lennon, D. J., Maíz Apellániz, J., Markova, N., Najarro, F., Puls, J., Taylor, W. D., and Vink, J. S. (2013) The VLT-FLAMES Tarantula Survey: XII. Rotational velocities of the single O-type stars. A&A, 560, A29. https://doi.org/10.1051/0004-6361/201321986.

Raucq, F., Gosset, E., Rauw, G., Manfroid, J., Mahy, L., Mennekens, N., and Vanbeveren, D. (2017) Observational signatures of past mass-exchange episodes in massive binaries: the case of LSS 3074. A&A, 601, A133. https://doi.org/10.1051/0004-6361/201630330.

Raucq, F., Rauw, G., Gosset, E., Nazé, Y., Mahy, L., Hervé, A., and Martins, F. (2016) Observational signatures of past mass-exchange episodes in massive binaries: The case of HD 149 404. A&A, 588, A10. https://doi.org/10.1051/0004-6361/201527543.

Rauw, G., Crowther, P. A., De Becker, M., Gosset, E., Nazé, Y., Sana, H., van der Hucht, K. A., Vreux, J.-M., and Williams, P. M. (2005) The spectrum of the very massive binary system WR 20a (WN6ha + WN6ha): Fundamental parameters and wind interactions. A&A, 432(3), 985–998. https://doi.org/10.1051/0004-6361:20042136.

Rauw, G., Nazé, Y., Fernández Lajús, E., Lanotte, A. A., Solivella, G. R., Sana, H., and Gosset, E. (2009) Optical spectroscopy of X-Mega targets in the Carina nebula – VII. On the multiplicity of Tr 16-112, HD 93343 and HD 93250. MNRAS, 398(3), 1582–1592. https://doi.org/10.1111/j.1365-2966.2009.15226.x.

Rauw, G., Nazé, Y., and Gosset, E. (2023) Revisiting the orbital motion of WR 138. NewA, 104, 102062. https://doi.org/10.1016/j.newast.2023.102062.

Rauw, G., Pigulski, A., Nazé, Y., David-Uraz, A., Handler, G., Raucq, F., Gosset, E., Moffat, A. F. J., Neiner, C., Pablo, H., Popowicz, A., Rucinski, S. M., Wade, G. A., Weiss, W., and Zwintz, K. (2019) BRITE photometry of the massive post-RLOF system HD149 404. A&A, 621, A15. https://doi.org/10.1051/0004-6361/201833594.

Rauw, G., Sana, H., Antokhin, I. I., Morrell, N. I., Niemela, V. S., Albacete Colombo, J. F., Gosset, E., and Vreux, J.-M. (2001) Optical spectroscopy of XMEGA targets in the Carina Nebula – III. The multiple system Tr 16-104 (≡CPD −59° 2603). MNRAS, 326(3), 1149–1160. https://doi.org/10.1046/j.1365-8711.2001.04681.x.

Renzo, M. and Götberg, Y. (2021) Evolution of accretor stars in massive binaries: Broader implications from modeling ζ Ophiuchi. ApJ, 923(2), 277. https://doi.org/10.3847/1538-4357/ac29c5.

Rickard, M. J. and Pauli, D. (2023) A low-metallicity massive contact binary undergoing slow Case A mass transfer: A detailed spectroscopic and orbital analysis of SSN 7 in NGC 346 in the SMC. A&A, 674, A56. https://doi.org/10.1051/0004-6361/202346055.

Rosu, S., Rauw, G., Conroy, K. E., Gosset, E., Manfroid, J., and Royer, P. (2020) Apsidal motion in the massive binary HD 152248. A&A, 635, A145. https://doi.org/10.1051/0004-6361/201937285.

Rosu, S., Rauw, G., Farnir, M., Dupret, M.-A., and Noels, A. (2022a) Apsidal motion in massive eccentric binaries in NGC 6231: The case of HD 152219. A&A, 660, A120. https://doi.org/10.1051/0004-6361/202141304.

Rosu, S., Rauw, G., Nazé, Y., Gosset, E., and Sterken, C. (2022b) Apsidal motion in massive eccentric binaries: The case of CPD-41° 7742, and HD 152218 revisited. A&A, 664, A98. https://doi.org/10.1051/0004-6361/202243707.

Sana, H., de Mink, S. E., de Koter, A., Langer, N., Evans, C. J., Gieles, M., Gosset, E., Izzard, R. G., Le Bouquin, J.-B., and Schneider, F. R. N. (2012) Binary interaction dominates the evolution of massive stars. Sci, 337, 444–446. https://doi.org/10.1126/science.1223344.

Schneider, F. R. N., Ohlmann, S. T., Podsiadlowski, Ph., Röpke, F. K., Balbus, S. A., Pakmor, R., and Springel, V. (2019) Stellar mergers as the origin of magnetic massive stars. Natur, 574, 211–214. https://doi.org/10.1038/s41586-019-1621-5.

Schneider, F. R. N., Podsiadlowski, Ph., Langer, N., Castro, N., and Fossati, L. (2016) Rejuvenation of stellar mergers and the origin of magnetic fields in massive stars. MNRAS, 457(3), 2355–2365. https://doi.org/10.1093/mnras/stw148.

Sen, K., Langer, N., Marchant, P., Menon, A., de Mink, S. E., Schootemeijer, A., Schürmann, C., Mahy, L., Hastings, B., Nathaniel, K., Sana, H., Wang, C., and Xu, X. T. (2022) Detailed models of interacting short-period massive binary stars. A&A, 659, A98. https://doi.org/10.1051/0004-6361/202142574.

Sen, K., Langer, N., Pauli, D., Gräfener, G., Schootemeijer, A., Sana, H., Shenar, T., Mahy, L., and Wang, C. (2023) Reverse Algols and hydrogen-rich Wolf–Rayet stars from very massive binaries. A&A, 672, A198. https://doi.org/10.1051/0004-6361/202245378.

Shao, Y. and Li, X.-D. (2021) Population synthesis of Galactic Be-star binaries with a helium-star companion. ApJ, 908(1), 67. https://doi.org/10.3847/1538-4357/abd2b4.

Shara, M. M., Crawford, S. M., Vanbeveren, D., Moffat, A. F. J., Zurek, D., and Crause, L. (2017) The spin rates of O stars in WR + O binaries – I. Motivation, methodology, and first results from SALT. MNRAS, 464(2), 2066–2074. https://doi.org/10.1093/mnras/stw2450.

Shara, M. M., Crawford, S. M., Vanbeveren, D., Moffat, A. F. J., Zurek, D., and Crause, L. (2020) The spin rates of O stars in WR+O Magellanic Cloud binaries. MNRAS, 492(3), 4430–4436. https://doi.org/10.1093/mnras/staa038.

Shultz, M., Wade, G. A., Alecian, E., and the BinaMIcS Collaboration (2015) Detection of magnetic fields in both B-type components of the 𝜀 Lupi system: a new constraint on the origin of fossil fields? MNRAS, 454(1), L1–L5. https://doi.org/10.1093/mnrasl/slv096.

Ud-Doula, A., Owocki, S. P., and Townsend, R. H. D. (2009) Dynamical simulations of magnetically channelled line–driven stellar winds – III. Angular momentum loss and rotational spin-down. MNRAS, 392(3), 1022–1033. https://doi.org/10.1111/j.1365-2966.2008.14134.x.

van Bever, J. and Vanbeveren, D. (1997) The number of B-type binary mass gainers in general, binary Be stars in particular, predicted by close binary evolution. A&A, 322, 116–126. https://ui.adsabs.harvard.edu/abs/1997A&A...322..116V.

Vanbeveren, D. (1991) The evolution of massive close binaries revised. A&A, 252(1), 159–171. https://ui.adsabs.harvard.edu/abs/1991A&A...252..159V.

Vanbeveren, D. and De Loore, C. (1994) The evolution of the mass gainer in massive close binaries. A&A, 290, 129–132. https://ui.adsabs.harvard.edu/abs/1994A&A...290..129V.

Vanbeveren, D., De Loore, C., and Van Rensbergen, W. (1998) Massive stars. A&ARv, 9(1-2), 63–152. https://doi.org/10.1007/s001590050015.

Vanbeveren, D., Mennekens, N., Shara, M. M., and Moffat, A. F. J. (2018) Spin rates and spin evolution of O components in WR+O binaries. A&A, 615, A65. https://doi.org/10.1051/0004-6361/201732212.

Wang, L., Gies, D. R., Peters, G. J., Götberg, Y., Chojnowski, S. D., Lester, K. V., and Howell, S. B. (2021) The detection and characterization of Be+sdO binaries from HST/STIS FUV spectroscopy. AJ, 161(5), 248. https://doi.org/10.3847/1538-3881/abf144.

Wang, L., Gies, D. R., Peters, G. J., and Han, Z. (2023) The orbital and physical properties of five southern Be+sdO binary systems. AJ, 165(5), 203. https://doi.org/10.3847/1538-3881/acc6ca.

Yungelson, L., Kuranov, A., Postnov, K., Kuranova, M., Oskinova, L. M., and Hamann, W.-R. (2024) Elusive hot stripped helium stars in the Galaxy. I. Evolutionary stellar models in the gap between subdwarfs and Wolf–Rayet stars. A&A, 683, A37. https://doi.org/10.1051/0004-6361/202347806.

Pour citer cet article

Gregor Rauw, «Caught in flagrante delicto: Evidence for Past Mass Transfer in Massive Binaries?», Bulletin de la Société Royale des Sciences de Liège [En ligne], Volume 93 - Année 2024, No 3 - 41st Liège International Astrophysical Colloquium, 58-84 URL : https://popups.uliege.be/0037-9565/index.php?id=12266.

A propos de : Gregor Rauw

STAR Institute, Université de Liège, Allée du Six-Août, 19c, Bât B5c, 4000–Liège, Belgium
email : g.rauw@uliege.be